drive gene
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Freddy Bunbury ◽  
Evelyne Deery ◽  
Andrew Sayer ◽  
Vaibhav Bhardwaj ◽  
Ellen Harrison ◽  
...  

Cobalamin (vitamin B12), is a cofactor for crucial metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonise the algal phycosphere, forming stable communities that gain preferential access to exudates and in return provide compounds, such as B12. Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12-dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12-independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesise that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12-dependent algae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keerthi Thirtamara Rajamani ◽  
Amanda B. Leithead ◽  
Michelle Kim ◽  
Marie Barbier ◽  
Michael Peruggia ◽  
...  

AbstractHypothalamic oxytocin (OXT) and arginine-vasopressin (AVP) neurons have been at the center of several physiological and behavioral studies. Advances in viral vector biology and the development of transgenic rodent models have allowed for targeted gene expression to study the functions of specific cell populations and brain circuits. In this study, we compared the efficiency of various adeno-associated viral vectors in these cell populations and demonstrated that none of the widely used promoters were, on their own, effective at driving expression of a down-stream fluorescent protein in OXT or AVP neurons. As anticipated, the OXT promoter could efficiently drive gene expression in OXT neurons and this efficiency is solely attributed to the promoter and not the viral serotype. We also report that a dual virus approach using an OXT promoter driven Cre recombinase significantly improved the efficiency of viral transduction in OXT neurons. Finally, we demonstrate the utility of the OXT promoter for conducting functional studies on OXT neurons by using an OXT specific viral system to record neural activity of OXT neurons in lactating female rats across time. We conclude that extreme caution is needed when employing non-neuron-specific viral approaches/promoters to study neural populations within the paraventricular nucleus of the hypothalamus.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sheng-Hui Lan ◽  
Shu-Ching Lin ◽  
Wei-Chen Wang ◽  
Yu-Chan Yang ◽  
Jenq-Chang Lee ◽  
...  

Many studies reported that microRNAs (miRNAs) target autophagy-related genes to affect carcinogenesis, however, autophagy-deficiency-related miRNA dysfunction in cancer development remains poorly explored. During autophagic progression, we identified miR-449a as the most up-regulated miRNA. MiR-449a expression was low in the tumor parts of CRC patient specimens and inversely correlated with tumor stage and metastasis with the AUC (area under the curve) of 0.899 and 0.736 as well as poor overall survival rate, indicating that miR-449a has the potential to be a prognostic biomarker. In the same group of CRC specimens, low autophagic activity (low Beclin 1 expression and high p62 accumulation) was detected, which was significantly associated with miR-449a expression. Mechanistic studies disclosed that autophagy upregulates miR-449a expression through degradation of the coactivator p300 protein which acetylates the transcription factor Forkhead Box O1 (FoxO1). Unacetylated FoxO1 translocated to the nucleus and bound to the miR-449a promoter to drive gene expression. Either activation of autophagy by the inducer or overexpression of exogenous miR-449a decreases the expression of target gene LEF-1 and cyclin D1, which lead to decreased proliferation, colony formation, migration, and invasion of CRC cells. Autophagy-miR-449a-tartet genes mediated suppression of tumor formation was further confirmed in the xenograft mouse model. In conclusion, this study reveals a novel mechanism wherein autophagy utilizes miR-449a-LEF1-cyclin D1 axis to suppress CRC tumorigenesis. Our findings open a new avenue toward prognosis and treatment of CRC patients by manipulating autophagy-miR-449a axis.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1376
Author(s):  
Cian Glenfield ◽  
Hideki Innan

Chromosomal rearrangement and genome instability are common features of cancer cells in human. Consequently, gene duplication and gene fusion events are frequently observed in human malignancies and many of the products of these events are pathogenic, representing significant drivers of tumourigenesis and cancer evolution. In certain subsets of cancers duplicated and fused genes appear to be essential for initiation of tumour formation, and some even have the capability of transforming normal cells, highlighting the importance of understanding the events that result in their formation. The mechanisms that drive gene duplication and fusion are unregulated in cancer and they facilitate rapid evolution by selective forces akin to Darwinian survival of the fittest on a cellular level. In this review, we examine current knowledge of the landscape and prevalence of gene duplication and gene fusion in human cancers.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ning Liu ◽  
Wai Yee Low ◽  
Hamid Alinejad-Rokny ◽  
Stephen Pederson ◽  
Timothy Sadlon ◽  
...  

AbstractEukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.


2021 ◽  
Author(s):  
Jiaxu Wang ◽  
Tong Zhang ◽  
Yu Zhang ◽  
Wen Ting Tan ◽  
Roland G Huber ◽  
...  

The distribution, dynamics and function of RNA structures in human development is under-explored. Here, we systematically assayed RNA structural dynamics and its relationship with gene expression, translation and decay during human neurogenesis. We observed that the human ESC transcriptome is globally more structurally accessible than that of differentiated cells; and undergo extensive RNA structure changes, particularly in the 3UTR. Additionally, RNA structure changes during differentiation is associated with translation and decay. We also identified stage-specific regulation as RBP and miRNA binding, as well as splicing is associated with structure changes during early and late differentiation, respectively. Further, RBPs serve as a major factor in structure remodelling and co-regulates additional RBPs and miRNAs through structure. We demonstrated an example of this by showing that PUM2-induced structure changes on LIN28A enable miR-30 binding. This study deepens our understanding of the wide-spread and complex role of RNA-based gene regulation during human development.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
SARAH B. CAREY ◽  
LESLIE M. KOLLAR ◽  
STUART F. MCDANIEL

Studies of sex chromosomes have played a central role in understanding the consequences of suppressed recombination and sex-specific inheritance among several genomic phenomena. However, we argue that these efforts will benefit from a more rigorous examination of haploid UV sex chromosome systems, in which both the female-limited (U) and male-limited (V) experience suppressed recombination and sex-limited inheritance, and both are transcriptionally active in the haploid and diploid states. We review the life cycle differences that generate UV sex chromosomes and genomic data showing that ancient UV systems have evolved independently in many eukaryotic groups, but gene movement on and off the sex chromosomes, and potentially degeneration continue to shape the current gene content of the U and V chromosomes. Although both theory and empirical data show that the evolution of UV sex chromosomes is shaped by many of the same processes that govern diploid sex chromosome systems, we highlight how the symmetrical inheritance between the UV chromosomes provide an important test of sex-limited inheritance in shaping genome architecture. We conclude by examining how genetic conflict (over sexual dimorphism, transmission-ratio distortion, or parent-offspring conflict) may drive gene gain on UV sex chromosomes, and highlight the role of breeding system in governing the action of these processes. Collectively these observations demonstrate the potential for evolutionary genomic analyses of varied UV sex chromosome systems, combined with natural history studies, to understand how genetic conflict shapes sex chromosome gene content.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chia-Chi Flora Huang ◽  
Shreyas Lingadahalli ◽  
Tunc Morova ◽  
Dogancan Ozturan ◽  
Eugene Hu ◽  
...  

Abstract Background Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10–100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. Results To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. Conclusions Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.


2021 ◽  
Author(s):  
Axel Thieffry ◽  
Jette Bornholdt ◽  
Andrea Barghetti ◽  
Albin Sandelin ◽  
Peter Brodersen

ABSTRACTImmune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers of the genetic reprogramming required to reach the immune state remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression (CAGE). Our results show that as much as 15% of all PAMP response genes display alternative transcription initiation. In several cases, use of alternative TSSs may be regulatory as it determines inclusion of target peptides or protein domains, or occurrence of upstream open reading frames (uORFs) in mRNA leader sequences. We also find that 60% of PAMP-response genes respond much earlier than previously thought. In particular, a previously unnoticed cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, some examples of known potentiators of PTI, in one case under direct MAP kinase control, support the notion that the rapidly induced transcription factors could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.


Sign in / Sign up

Export Citation Format

Share Document