scholarly journals Sucrose intensity coding and decision-making in rat gustatory cortices

2018 ◽  
Author(s):  
Esmeralda Fonseca ◽  
Victor de Lafuente ◽  
Sidney A. Simon ◽  
Ranier Gutierrez

AbstractSucrose’s sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose’s intensity, indicating that for sweetness the gustatory system used a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject’s choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Esmeralda Fonseca ◽  
Victor de Lafuente ◽  
Sidney A Simon ◽  
Ranier Gutierrez

Sucrose’s sweet intensity is one attribute contributing to the overconsumption of high-energy palatable foods. However, it is not known how sucrose intensity is encoded and used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats in a sucrose intensity discrimination task and found that sucrose evoked a widespread response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed the most information about sucrose’s intensity, indicating that for sweetness the gustatory system uses a compact and distributed code. Sucrose intensity was encoded in both firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the subject’s choices, whereas all three regions tracked reward omission. Overall, these multimodal areas provide a neural representation of perceived sucrose intensity, and of task-related information underlying perceptual decision-making.


2018 ◽  
Author(s):  
Ben Deverett ◽  
Sue Ann Koay ◽  
Marlies Oostland ◽  
Samuel S.-H. Wang

To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Here we show that during perceptual decision-making over a period of seconds, decision-, sensory-, and error-related information converge on the lateral posterior cerebellum in crus I, a structure that communicates bidirectionally with numerous forebrain regions. We trained mice on a novel evidence-accumulation task and demonstrated that cerebellar inactivation reduces behavioral accuracy without impairing motor parameters of action. Using two-photon calcium imaging, we found that Purkinje cell somatic activity encoded choice- and evidence-related variables. Decision errors were represented by dendritic calcium spikes, which are known to drive plasticity. We propose that cerebellar circuitry may contribute to the set of distributed computations in the brain that support accurate perceptual decision-making.


Author(s):  
Elaheh Imani ◽  
Ahad Harati ◽  
Hamidreza Pourreza ◽  
Morteza Moazami Goudarzi

AbstractPerceptual decision making, as a process of detecting and categorizing information, has been studied extensively over the last two decades. In this study, we investigated the neural characterization of the whole decision-making process by discovering the information processing stages. Such that, the timing and the neural signature of the processing stages were identified for individual trials. The association of stages duration with the stimulus coherency and spatial prioritization factors also revealed the importance of the evidence accumulation process on the speed of the whole decision-making process. We reported that the impact of the stimulus coherency and spatial prioritization on the neural representation of the decision-making process was consistent with the behavioral characterization as well. This study demonstrated that uncovering the cognitive processing stages provided more insights into the decision-making process.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tarryn Balsdon ◽  
Pascal Mamassian ◽  
Valentin Wyart

Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here, we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with the computation of confidence, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for evaluating perceptual decision confidence.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ben Deverett ◽  
Sue Ann Koay ◽  
Marlies Oostland ◽  
Samuel S-H Wang

To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Using a novel evidence-accumulation task for mice, we performed recording and perturbation studies of crus I of the lateral posterior cerebellum, which communicates bidirectionally with numerous forebrain regions. Cerebellar inactivation led to a reduction in the fraction of correct trials. Using two-photon fluorescence imaging of calcium, we found that Purkinje cell somatic activity contained choice/evidence-related information. Decision errors were represented by dendritic calcium spikes, which in other contexts are known to drive cerebellar plasticity. We propose that cerebellar circuitry may contribute to computations that support accurate performance in this perceptual decision-making task.


2021 ◽  
Author(s):  
T. Balsdon ◽  
P. Mamassian ◽  
V. Wyart

AbstractPerceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with suboptimalities affecting confidence reports, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for the computation of confidence.


2018 ◽  
Author(s):  
Greta Vilidaite ◽  
Emma Marsh ◽  
Daniel H. Baker

AbstractHuman contrast discrimination performance is limited by transduction nonlinearities and variability of the neural representation (noise). Whereas the nonlinearities have been well-characterised, there is less agreement about the specifics of internal noise. Psychophysical models assume that it impacts late in sensory processing, whereas neuroimaging and intracranial electrophysiology studies suggest that the noise is much earlier. We investigated whether perceptually-relevant internal noise arises in early visual areas or later decision making areas. We recorded EEG and MEG during a two-interval-forced-choice contrast discrimination task and used multivariate pattern analysis to decode target/non-target and selected/non-selected intervals from evoked responses. We found that perceptual decisions could be decoded from both EEG and MEG signals, even when the stimuli in both intervals were physically identical. Above-chance decision classification started <100ms after stimulus onset, suggesting that neural noise affects sensory signals early in the visual pathway. Classification accuracy increased over time, peaking at >500ms. Applying multivariate analysis to separate anatomically-defined brain regions in MEG source space, we found that occipital regions were informative early on but then information spreads forwards across parietal and frontal regions. This is consistent with neural noise affecting sensory processing at multiple stages of perceptual decision making. We suggest how early sensory noise might be resolved with Birdsall’s linearisation, in which a dominant noise source obscures subsequent nonlinearities, to allow the visual system to preserve the wide dynamic range of early areas whilst still benefitting from contrast-invariance at later stages. A preprint of this work is available at: http://dx.doi.org/10.1101/364612


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2018 ◽  
Vol 41 ◽  
Author(s):  
David Danks

AbstractThe target article uses a mathematical framework derived from Bayesian decision making to demonstrate suboptimal decision making but then attributes psychological reality to the framework components. Rahnev & Denison's (R&D) positive proposal thus risks ignoring plausible psychological theories that could implement complex perceptual decision making. We must be careful not to slide from success with an analytical tool to the reality of the tool components.


Sign in / Sign up

Export Citation Format

Share Document