scholarly journals Separable neural signatures of confidence during perceptual decisions

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tarryn Balsdon ◽  
Pascal Mamassian ◽  
Valentin Wyart

Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here, we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with the computation of confidence, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for evaluating perceptual decision confidence.

2021 ◽  
Author(s):  
T. Balsdon ◽  
P. Mamassian ◽  
V. Wyart

AbstractPerceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with suboptimalities affecting confidence reports, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for the computation of confidence.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ella Podvalny ◽  
Leana E King ◽  
Biyu J He

Arousal levels perpetually rise and fall spontaneously. How markers of arousal - pupil size and frequency content of brain activity - relate to each other and influence behavior in humans is poorly understood. We simultaneously monitored magnetoencephalography and pupil in healthy volunteers at rest and during a visual perceptual decision-making task. Spontaneously varying pupil size correlates with power of brain activity in most frequency bands across large-scale resting-state cortical networks. Pupil size recorded at prestimulus baseline correlates with subsequent shifts in detection bias (c) and sensitivity (d'). When dissociated from pupil-linked state, prestimulus spectral power of resting state networks still predicts perceptual behavior. Fast spontaneous pupil constriction and dilation correlate with large-scale brain activity as well but not perceptual behavior. Our results illuminate the relation between central and peripheral arousal markers and their respective roles in human perceptual decision-making.


2017 ◽  
Author(s):  
Laura Gwilliams ◽  
Jean-Rémi King

AbstractModels of perceptual decision making have historically been designed to maximally explain behaviour and brain activity independently of their ability to actually perform tasks. More recently, performance-optimized models have been shown to correlate with brain responses to images and thus present a complementary approach to understand perceptual processes. In the present study, we compare how these approaches comparatively account for the spatio-temporal organization of neural responses elicited by ambiguous visual stimuli. Forty-six healthy human subjects performed perceptual decisions on briefly flashed stimuli constructed from ambiguous characters. The stimuli were designed to have 7 orthogonal properties, ranging from low-sensory levels (e.g. spatial location of the stimulus) to conceptual (whether stimulus is a letter or a digit) and task levels (i.e. required hand movement). Magneto-encephalography source and decoding analyses revealed that these 7 levels of representations are sequentially encoded by the cortical hierarchy, and actively maintained until the subject responds. This hierarchy appeared poorly correlated to normative, drift-diffusion, and 5-layer convolutional neural networks (CNN) optimized to accurately categorize alpha-numeric characters, but partially matched the sequence of activations of 3/6 state-of-the-art CNNs trained for natural image labeling (VGG-16, VGG-19, MobileNet). Additionally, we identify several systematic discrepancies between these CNNs and brain activity, revealing the importance of single-trial learning and recurrent processing. Overall, our results strengthen the notion that performance-optimized algorithms can converge towards the computational solution implemented by the human visual system, and open possible avenues to improve artificial perceptual decision making.


Author(s):  
Elaheh Imani ◽  
Ahad Harati ◽  
Hamidreza Pourreza ◽  
Morteza Moazami Goudarzi

AbstractPerceptual decision making, as a process of detecting and categorizing information, has been studied extensively over the last two decades. In this study, we investigated the neural characterization of the whole decision-making process by discovering the information processing stages. Such that, the timing and the neural signature of the processing stages were identified for individual trials. The association of stages duration with the stimulus coherency and spatial prioritization factors also revealed the importance of the evidence accumulation process on the speed of the whole decision-making process. We reported that the impact of the stimulus coherency and spatial prioritization on the neural representation of the decision-making process was consistent with the behavioral characterization as well. This study demonstrated that uncovering the cognitive processing stages provided more insights into the decision-making process.


2020 ◽  
Author(s):  
Sridhar R. Jagannathan ◽  
Corinne A. Bareham ◽  
Tristan A. Bekinschtein

ABSTRACTThe ability to make decisions based on external information, prior knowledge and context is a crucial aspect of cognition and it may determine the success and survival of an organism. Despite extensive and detailed work done on the decision making mechanisms, the understanding of the effects of arousal remain limited. Here we characterise behavioural and neural dynamics of decision making in awake and low alertness periods to characterise the compensatory signatures of the cognitive system when arousal decreases. We used an auditory tone-localisation task in human participants under conditions of fully awake and low arousal. Behavioural dynamics analyses using psychophysics, signal detection theory and drift-diffusion modelling showed slower responses, decreased performance and a lower rate of evidence accumulation due to alertness fluctuations. To understand the modulation in neural dynamics we used multivariate pattern analysis (decoding), identifying a shift in the temporal and spatial signatures involved. Finally, we connected the computational parameters identified in the drift diffusion modelling with neural signatures, capturing the effective lag exerted by alertness in the neurocognitive system underlying decision making. These results define the reconfiguration of the brain networks, regions and dynamics needed for the implementation of perceptual decision making, revealing mechanisms of resilience of cognition when challenged by decreases in arousal.


Author(s):  
Jacobo Fernandez-Vargas ◽  
Christoph Tremmel ◽  
Davide Valeriani ◽  
Saugat Bhattacharyya ◽  
Caterina Cinel ◽  
...  

2021 ◽  
Author(s):  
Ren Paterson ◽  
Yizhou Lyu ◽  
Yuan Chang Leong

AbstractPeople are biased towards seeing outcomes that they are motivated to see. For example, sports fans of opposing teams often perceive the same ambiguous foul in favor of the team they support. Here, we test the hypothesis that amygdala-dependent allocation of visual attention facilitates motivational biases in perceptual decision-making. Human participants were rewarded for correctly categorizing an ambiguous image into one of two categories while undergoing fMRI. On each trial, we used a financial bonus to motivate participants to see one category over another. The reward maximizing strategy was to perform the categorization task accurately, but participants were biased towards categorizing the images as the category we motivated them to see. Heightened amygdala activity preceded motivation consistent categorizations, and participants with higher amygdala activation exhibited stronger motivational biases in their perceptual reports. Trial-by-trial amygdala activity was associated with stronger enhancement of neural activity encoding desirable percepts in sensory cortices, suggesting that amygdala-dependent effects on perceptual decisions arose from biased sensory processing. Analyses using a drift diffusion model provide converging evidence that trial-by-trial amygdala activity was associated with stronger motivational biases in the accumulation of sensory evidence. Prior work examining biases in perceptual decision-making have focused on the role of frontoparietal regions. Our work highlights an important contribution of the amygdala. When people are motivated to see one outcome over another, the amygdala biases perceptual decisions towards those outcomes.Significance StatementForming accurate perceptions of the environment is essential for adaptive behavior. People however are biased towards seeing what they want to see, giving rise to inaccurate perceptions and erroneous decisions. Here, we combined behavior, modeling, and fMRI to show that the bias towards seeing desirable percepts is related to trial-by-trial fluctuations in amygdala activity. In particular, during moments with higher amygdala activity, sensory processing is biased in favor of desirable percepts, such that participants are more likely to see what they want to see. These findings highlight the role of the amygdala in biasing visual perception, and shed light on the neural mechanisms underlying the influence of motivation and reward on how people decide what they see.


2019 ◽  
Author(s):  
Tiasha Saha Roy ◽  
Bapun Giri ◽  
Arpita Saha Chowdhury ◽  
Satyaki Mazumder ◽  
Koel Das

AbstractUnderstanding how individuals utilize social information while making perceptual decisions and how it affects their decision confidence is crucial in a society. Till date, very little is known about perceptual decision making in humans under the influence of social cues and the associated neural mediators. The present study provides empirical evidence of how individuals get manipulated by social cues while performing a face/car identification task. Subjects were significantly influenced by what they perceived as decisions of other subjects while the cues in reality were manipulated independently from the stimulus. Subjects in general tend to increase their decision confidence when their individual decision and social cues coincide, while their confidence decreases when cues conflict with their individual judgments often leading to reversal of decision. Using a novel statistical model, it was possible to rank subjects based on their propensity to be influenced by social cues. This was subsequently corroborated by analysis of their neural data. Neural time series analysis revealed no significant difference in decision making using social cues in the early stages unlike neural expectation studies with predictive cues. Multivariate pattern analysis of neural data alludes to a potential role of frontal cortex in the later stages of visual processing which appeared to code the effect of social cues on perceptual decision making. Specifically medial frontal cortex seems to play a role in facilitating perceptual decision preceded by conflicting cues.


Sign in / Sign up

Export Citation Format

Share Document