scholarly journals Centromeric CENP-A loading requires accurate mitotic timing, which is linked to checkpoint proteins

2018 ◽  
Author(s):  
Anne Laure Pauleau ◽  
Andrea Bergner ◽  
Janko Kajtez ◽  
Sylvia Erhardt

AbstractA defining feature of centromeres is the presence of the histone H3 variant CENP-A that replaces H3 in a subset of centromeric nucleosomes. In Drosophila cultured cells CENP-A deposition at centromeres takes place during the metaphase stage of the cell cycle and strictly depends on the presence of its specific chaperone CAL1. How CENP-A loading is restricted to mitosis is unknown. We found that overexpression of CAL1 is associated with increased CENP-A levels at centromeres and completely uncouples CENP-A loading from mitosis. Moreover, CENP-A levels inversely correlate with mitosis duration. We found that CAL1 interacts with the spindle assembly checkpoint protein and RZZ complex component Zw10 and thus constitutes the anchor for the recruitment of RZZ. Therefore, CAL1 controls CENP-A incorporation at centromeres both quantitatively and temporally, connecting it to the spindle assembly checkpoint to ensure mitotic fidelity.

2007 ◽  
Vol 179 (4) ◽  
pp. 601-609 ◽  
Author(s):  
Emilie Montembault ◽  
Stéphanie Dutertre ◽  
Claude Prigent ◽  
Régis Giet

The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre–messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Benjamin M Stormo ◽  
Donald T Fox

Duplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindle-independent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2’s control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention.


2016 ◽  
Author(s):  
Benjamin M. Stormo ◽  
Donald T. Fox

ABSTRACTDuplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindlePindependent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2’s control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention.


2011 ◽  
pp. 142-153
Author(s):  
Marie-Cécile Caillaud ◽  
Laetitia Paganelli ◽  
Philippe Lecomte ◽  
Laurent Deslandes ◽  
Michaël Quentin ◽  
...  

2020 ◽  
Vol 469 ◽  
pp. 11-21 ◽  
Author(s):  
Mark Bates ◽  
Fiona Furlong ◽  
Michael F. Gallagher ◽  
Cathy D. Spillane ◽  
Amanda McCann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document