scholarly journals Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks

2018 ◽  
Author(s):  
p Schäp ◽  
MJ Kwon ◽  
B Baumann ◽  
B Gutschmann ◽  
S Jung ◽  
...  

AbstractA significant challenge in our understanding of biological systems is the high number of genes with unknown function in many genomes. The fungal genus Aspergillus contains important pathogens of humans, model organisms, and microbial cell factories. Aspergillus niger is used to produce organic acids, proteins, and is a promising source of new bioactive secondary metabolites. Out of the 14,165 open reading frames predicted in the A. niger genome of only 2% have been experimentally verified and over 6,000 are hypothetical. Here we show that gene co-expression network analysis can be used to overcome this limitation. A meta-analysis of 155 transcriptomics experiments generated co-expression networks for 9,579 genes (∼65%) of the A. niger genome. By populating this dataset with over 1,200 gene functional experiments from the genus Aspergillus and performing gene ontology enrichment, we could infer biological processes for 9,263 of A. niger genes, including 2,970 hypothetical genes. Experimental validation of selected co-expression sub-networks uncovered four transcription factors involved in secondary metabolite synthesis, which were used to activate production of multiple natural products. This study constitutes a significant step towards systems-level understanding of A. niger, and the datasets can be used to fuel discoveries of model systems, fungal pathogens, and biotechnology.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Chenyi Li ◽  
Xiaopeng Gao ◽  
Xiao Peng ◽  
Jinlin Li ◽  
Wenxin Bai ◽  
...  

Abstract Background In industrial fermentation, pH fluctuation resulted from microbial metabolism influences the strain performance and the final production. The common way to control pH is adding acid or alkali after probe detection, which is not a fine-tuned method and often leads to increased costs and complex downstream processing. Here, we constructed an intelligent pH-sensing and controlling genetic circuits called “Genetic pH Shooting (GPS)” to realize microbial self-regulation of pH. Results In order to achieve the self-regulation of pH, GPS circuits consisting of pH-sensing promoters and acid-/alkali-producing genes were designed and constructed. Designed pH-sensing promoters in the GPS can respond to high or low pHs and generate acidic or alkaline substances, achieving endogenously self-responsive pH adjustments. Base shooting circuit (BSC) and acid shooting circuit (ASC) were constructed and enabled better cell growth under alkaline or acidic conditions, respectively. Furthermore, the genetic circuits including GPS, BSC and ASC were applied to lycopene production with a higher yield without an artificial pH regulation compared with the control under pH values ranging from 5.0 to 9.0. In scale-up fermentations, the lycopene titer in the engineered strain harboring GPS was increased by 137.3% and ammonia usage decreased by 35.6%. Conclusions The pH self-regulation achieved through the GPS circuits is helpful to construct intelligent microbial cell factories and reduce the production costs, which would be much useful in industrial applications.


2021 ◽  
Author(s):  
Eline Postma ◽  
Else-Jasmijn Hassing ◽  
Venda Mangkusaputra ◽  
Jordi Geelhoed ◽  
Pilar de la Torre ◽  
...  

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


2019 ◽  
Author(s):  
Nicolai Kallscheuer ◽  
Hirokazu Kage ◽  
Lars Milke ◽  
Markus Nett ◽  
Jan Marienhagen

AbstractType I polyketide synthases (PKSs) are large multi-domain proteins converting simple acyl-CoA thioesters such as acetyl-CoA and malonyl-CoA to a large diversity of biotechnologically interesting molecules. Such multi-step reaction cascades are of particular interest for applications in engineered microbial cell factories, as the introduction of a single protein with many enzymatic activities does not require balancing of several individual enzymatic activities. However, functional introduction of type I PKSs into heterologous hosts is very challenging as the large polypeptide chains often do not fold properly. In addition, PKS usually require post-translational activation by dedicated 4’-phosphopantetheinyl transferases (PPTases). Here, we introduce an engineeredCorynebacterium glutamicumstrain as a novel microbial cell factory for type I PKS-derived products. Suitability ofC. glutamicumfor polyketide synthesis could be demonstrated by the functional introduction of the 6-methylsalicylic acid synthase ChlB1 fromStreptomyces antibioticus. Challenges related to protein folding could be overcome by translation fusion of ChlB1Sato the C-terminus of the maltose-binding protein MalE fromEscherichia coli. Surprisingly, ChlB1Sawas also active in absence of a heterologous PPTase, which finally led to the discovery that the endogenous PPTase PptACgofC. glutamicumcan also activate ChlB1Sa. The best strain, engineered to provide increased levels of acetyl-CoA and malonyl-CoA, accumulated up to 41 mg/L (0.27 mM) 6-methylsalicylic acid within 48 h of cultivation. Further experiments showed that PptACgofC. glutamicumcan also activate nonribosomal peptide synthetases (NRPSs), renderingC. glutamicuma promising microbial cell factory for the production of several fine chemicals and medicinal drugs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenning Liu ◽  
Xue Zhang ◽  
Dengwei Lei ◽  
Bin Qiao ◽  
Guang-Rong Zhao

Abstract Background 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. Results Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from l-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from l-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor l-phenylalanine and combined the upstream l-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. Conclusions We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


Author(s):  
Pratiksha Singh ◽  
Rajesh Kumar Singh ◽  
Mohini Prabha Singh ◽  
Qi Qi Song ◽  
Manoj K. Solanki ◽  
...  

ChemInform ◽  
2012 ◽  
Vol 43 (29) ◽  
pp. no-no
Author(s):  
Cormac D. Murphy

2015 ◽  
Vol 42 (5) ◽  
pp. 681-691 ◽  
Author(s):  
Martina Bellasio ◽  
Diethard Mattanovich ◽  
Michael Sauer ◽  
Hans Marx

Sign in / Sign up

Export Citation Format

Share Document