microbial cell factory
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 60)

H-INDEX

11
(FIVE YEARS 4)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Qi Yang ◽  
Wenli Lin ◽  
Jiawei Xu ◽  
Nan Guo ◽  
Jiachen Zhao ◽  
...  

Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.


Author(s):  
Jinho Yeom ◽  
Jong Seong Park ◽  
Seung-Woon Jung ◽  
Sumin Lee ◽  
Hyukjin Kwon ◽  
...  

2021 ◽  
Author(s):  
Jeffrey J Czajka ◽  
Deepanwita Banerjee ◽  
Thomas T Eng ◽  
Javier Menasalvas ◽  
Chunsheng Yan ◽  
...  

Microbial cell factory development often faces bottlenecks after initial rounds of design-build-test-learn (DBTL) cycles as engineered producers respond unpredictably to further genetic modifications. Thus, deciphering metabolic flux and correcting bottlenecks are key components of DBTL cycles. Here, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using both 13C-metabolic flux analysis (13C-MFA) and metabolite measurements. The results indicated the conservation of the cyclic Entner-Doudoroff (ED)-EMP pathway flux, downregulation of the TCA cycle and pyruvate shunt, and glyoxylate shunt activation. At the metabolite level, the CRISPR/dCpf1-interference mediated multiplex repression decreased gluconate/2-ketogluconate secretion and altered several intracellular TCA metabolite concentrations, leading to succinate overflow. Further strain engineering based on the metabolic knowledge first employed an optimal ribosome binding site (RBS) to achieve stronger product-substrate growth coupling (1.6-fold increase). Then, deletion strains were constructed using ssDNA recombineering. Of the five strains tested, deletion of the PHA operon (ΔphaAZC-IID) resulted in a 2.2-fold increase in growth phase production compared to the optimal RBS construct. After 72 h of batch cultivation, the ΔphaAZC-IID strain had 1.5-fold and 1.8-fold increases of indigoidine titer compared to the improved RBS construct and the original strain, respectively. Overall, the findings provided actionable DBTL targets as well as insights into physiological responses and flux buffering when new recombineering tools were used for engineering P. putida KT2440.


2021 ◽  
Vol 7 (12) ◽  
pp. 1047
Author(s):  
Marlene Baptista ◽  
Joana T. Cunha ◽  
Lucília Domingues

The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans’ inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenzhu Guo ◽  
Jianhua Yang ◽  
Tianchen Huang ◽  
Dandan Liu ◽  
Qian Liu ◽  
...  

Abstract Background Starch is one of the most important renewable polysaccharides in nature for production of bio-ethanol. The starch saccharification step facilitates the depolymerization of starch to yield glucose for biofuels production. The filamentous fungus Aspergillus niger (A. niger) is the most used microbial cell factory for production of the commercial glucoamylase. However, the role of each component in glucoamylases cocktail of A. niger O1 for starch saccharification remains unclear except glucoamylase. Results In this study, we identified the key enzymes contributing to the starch saccharification process are glucoamylase, α-amylase and acid α-amylase out of 29 glycoside hydrolases from the 6-day fermentation products of A. niger O1. Through the synergistic study of the multienzymes for the starch saccharification in vitro, we found that increasing the amount of α-amylase by 5-10 times enhanced the efficiency of starch saccharification by 14.2-23.2%. Overexpression of acid α-amylase in strain O1 in vivo increased the total glucoamylase activity of O1 cultures by 15.0%. Conclusions Our study clarifies the synergistic effects among the components of glucoamylases cocktail, and provides an effective approach to optimize the profile of saccharifying enzymes of strain O1 for improving the total glucoamylase activity.


2021 ◽  
Author(s):  
Eline Postma ◽  
Else-Jasmijn Hassing ◽  
Venda Mangkusaputra ◽  
Jordi Geelhoed ◽  
Pilar de la Torre ◽  
...  

The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.


Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 121070
Author(s):  
Shashi Kant Bhatia ◽  
Ranjit Gurav ◽  
Yong-Keun Choi ◽  
Hong-Ju Lee ◽  
Sang Hyun Kim ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Seyed Hossein Helalat ◽  
Carsten Jers ◽  
Mandana Bebahani ◽  
Hassan Mohabatkar ◽  
Ivan Mijakovic

Abstract Background The objective of this work was to engineer Deinococcus radiodurans R1 as a microbial cell factory for the production of pinene, a monoterpene molecule prominently used for the production of fragrances, pharmaceutical products, and jet engine biofuels. Our objective was to produce pinene from glycerol, an abundant by-product of various industries. Results To enable pinene production in D. radiodurans, we expressed the pinene synthase from Abies grandis, the geranyl pyrophosphate (GPP) synthase from Escherichia coli, and overexpressed the native 1-deoxy-d-xylulose 5-phosphate synthase. Further, we disrupted the deinoxanthin pathway competing for the substrate GPP by either inactivating the gene dr0862, encoding phytoene synthase, or substituting the native GPP synthase with that of E. coli. These manipulations resulted in a D. radiodurans strain capable of producing 3.2 ± 0.2 mg/L pinene in a minimal medium supplemented with glycerol, with a yield of 0.13 ± 0.04 mg/g glycerol in shake flask cultures. Additionally, our results indicated a higher tolerance of D. radiodurans towards pinene as compared to E. coli. Conclusions In this study, we successfully engineered the extremophile bacterium D. radiodurans to produce pinene. This is the first study demonstrating the use of D. radiodurans as a cell factory for the production of terpenoid molecules. Besides, its high resistance to pinene makes D. radiodurans a suitable host for further engineering efforts to increase pinene titer as well as a candidate for the production of the other terpenoid molecules.


Sign in / Sign up

Export Citation Format

Share Document