scholarly journals The effects of awareness of the perturbation during motor adaptation on hand localization

2018 ◽  
Author(s):  
Shanaathanan Modchalingam ◽  
Chad Michael Vachon ◽  
Bernard Marius ’t Hart ◽  
Denise Y. P. Henriques

ABSTRACTExplicit awareness of a task is often evoked during rehabilitation and sports training with the intention of accelerating learning and improving performance. However, the effects of awareness of perturbations on the resulting sensory and motor changes produced during motor learning are not well understood. Here, we use explicit instructions as well as large rotation sizes to generate awareness of the perturbation during a visuomotor rotation task and test the resulting changes in both perceived and predicted sensory consequences as well as implicit motor changes.We split participants into 4 groups which differ in both magnitude of the rotation (either 30° or 60°) during adaptation, and whether they receive a strategy to counter the rotation or not prior to adaptation. Performance benefits of explicit instruction are largest during early adaptation but continued to lead to improved performance through 90 trials of training. We show that with either instruction, or with large perturbations, participants become aware of countering the rotation. However, we find a base amount of implicit learning, with equal magnitudes, across all groups, even when asked to exclude any strategies while reaching with no visual feedback of the hand.Participants also estimate the location of the unseen hand when it is moved by the robot (passive localization) and when they generate their own movement (active localization) following adaptation. These learning-induced shifts in estimates of hand position reflect both proprioceptive recalibration and updates in the predicted consequences of movements. We find that these estimates of felt hand position, which reflect updates in both proprioception and efference based estimates of hand position, shift significantly for all groups and were not modulated by either instruction or perturbation size.Our results indicate that not all processes of motor learning benefit from an explicit awareness of the task. Particularly, proprioceptive recalibration and the updating of predicted sensory consequences are largely implicit processes.

2018 ◽  
Author(s):  
Shanaathanan Modchalingam ◽  
Chad Vachon ◽  
Bernard Marius 't Hart ◽  
Denise Henriques

Awareness of task demands is often used during rehabilitation and sports training by providing instructions which appears to accelerate learning and improve performance through explicit motor learning. However, the effects of awareness of perturbations on the changes in estimates of hand position resulting from motor learning are not well understood. In this study, people adapted their reaches to a visuomotor rotation while either receiving instructions on the nature of the perturbation, experiencing a large rotation, or both to generate awareness of the perturbation and increase the contribution of explicit learning. We found that instructions and/or larger rotations allowed people to activate or deactivate part of the learned strategy at will and elicited explicit changes in open-loop reaches, while a small rotation without instructions did not. However, these differences in awareness, and even manipulations of awareness and perturbation size, did not appear to affect learning-induced changes in hand-localization estimates. This was true when estimates of the adapted hand location reflected changes in proprioception, produced when the hand was displaced by a robot, and also when hand location estimates were based on efferent-based predictions of self-generated hand movements. In other words, visuomotor adaptation led to significant shifts in predicted and perceived hand location that were not modulated by either instruction or perturbation size. Our results indicate that not all outcomes of motor learning benefit from an explicit awareness of the task. Particularly, proprioceptive recalibration and the updating of predicted sensory consequences appear to be largely implicit. (data: DOI 10.17605/OSF.IO/MX5U2, preprint: DOI[url])


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer E. Ruttle ◽  
Bernard Marius ’t Hart ◽  
Denise Y. P. Henriques

AbstractIn motor learning, the slow development of implicit learning is traditionally taken for granted. While much is known about training performance during adaptation to a perturbation in reaches, saccades and locomotion, little is known about the time course of the underlying implicit processes during normal motor adaptation. Implicit learning is characterized by both changes in internal models and state estimates of limb position. Here, we measure both as reach aftereffects and shifts in hand localization in our participants, after every training trial. The observed implicit changes were near asymptote after only one to three perturbed training trials and were not predicted by a two-rate model’s slow process that is supposed to capture implicit learning. Hence, we show that implicit learning is much faster than conventionally believed, which has implications for rehabilitation and skills training.


2018 ◽  
Author(s):  
Ahmed A. Mostafa ◽  
Bernard Marius ’t Hart ◽  
Denise Y.P. Henriques

AbstractAn accurate estimate of limb position is necessary for movement planning, before and after motor learning. Where we localize our unseen hand after a reach depends on felt hand position, or proprioception, but in studies and theories on motor adaptation this is quite often neglected in favour of predicted sensory consequences based on efference copies of motor commands. Both sources of information should contribute, so here we set out to further investigate how much of hand localization depends on proprioception and how much on predicted sensory consequences. We use a training paradigm combining robot controlled hand movements with rotated visual feedback that eliminates the possibility to update predicted sensory consequences (‘exposure training’), but still recalibrates proprioception, as well as a classic training paradigm with self-generated movements in another set of participants. After each kind of training we measure participants’ hand location estimates based on both efference-based predictions and afferent proprioceptive signals with self-generated hand movements (‘active localization’) as well as based on proprioception only with robot-generated movements (‘passive localization’). In the exposure training group, we find indistinguishable shifts in passive and active hand localization, but after classic training, active localization shifts more than passive, indicating a contribution from updated predicted sensory consequences. Both changes in open-loop reaches and hand localization are only slightly smaller after exposure training as compared to after classic training, confirming that proprioception plays a large role in estimating limb position and in planning movements, even after adaptation. (data: https://doi.org/10.17605/osf.io/zfdth, preprint: https://doi.org/10.1101/384941)


2020 ◽  
Vol 1 ◽  
Author(s):  
Sarah H. E. M. Voets ◽  
Muriel T. N. Panouilleres ◽  
Ned Jenkinson

AbstractMotor adaptation is a process by which the brain gradually reduces error induced by a predictable change in the environment, e.g., pointing while wearing prism glasses. It is thought to occur via largely implicit processes, though explicit strategies are also thought to contribute. Research suggests a role of the cerebellum in the implicit aspects of motor adaptation. Using non-invasive brain stimulation, we sought to investigate the involvement of the cerebellum in implicit motor adaptation in healthy participants. Inhibition of the cerebellum was attained through repetitive transcranial magnetic stimulation (rTMS), after which participants performed a visuomotor-rotation task while using an explicit strategy. Adaptation and aftereffects of the TMS group showed no difference in behaviour compared to a Sham stimulation group, therefore this study did not provide any further evidence of a specific role of the cerebellum in implicit motor adaptation. However, our behavioral findings replicate those in the seminal study by Mazzoni and Krakauer (2006).


2021 ◽  
pp. 1-19
Author(s):  
Femke van Abswoude ◽  
Remo Mombarg ◽  
Wouter de Groot ◽  
Gwennyth Eileen Spruijtenburg ◽  
Bert Steenbergen

2019 ◽  
Vol 696 ◽  
pp. 33-37 ◽  
Author(s):  
Ippei Nojima ◽  
Tatsunori Watanabe ◽  
Tomoya Gyoda ◽  
Hisato Sugata ◽  
Takashi Ikeda ◽  
...  

Author(s):  
Wanying Jiang ◽  
Yajie Liu ◽  
Yuqing Bi ◽  
Kunlin Wei

Exposure to task-irrelevant feedback leads to perceptual learning, but its effect on motor learning has been understudied. Here we asked human participants to reach a visual target with a hand-controlled cursor while observing another cursor moving independently in a different direction. While the task-irrelevant feedback did not change the main task's performance, it elicited robust savings in subsequent adaptation to classical visuomotor rotation perturbation. We demonstrated that the saving effect resulted from a faster formation of strategic learning through a series of experiments, not from gains in the implicit learning process. Furthermore, the saving effect was robust against drastic changes in stimulus features (i.e., rotation size or direction) or task types (i.e., for motor adaptation and skill learning). However, the effect was absent when the task-irrelevant feedback did not carry the visuomotor relationship embedded in visuomotor rotation. Thus, though previous research on perceptual learning has related task-irrelevant feedback to changes in early sensory processes, our findings support its role in acquiring abstract sensorimotor knowledge during motor learning. Motor learning studies have traditionally focused on task-relevant feedback, but our study extends the scope of feedback processes and sheds new light on the dichotomy of explicit and implicit learning in motor adaptation as well as motor structure learning.


2019 ◽  
pp. 77-96
Author(s):  
Rich S.W. Masters ◽  
Tina van Duijn ◽  
Liis Uiga

Sign in / Sign up

Export Citation Format

Share Document