scholarly journals The effects of awareness of the perturbation during motor adaptation on hand localization

2018 ◽  
Author(s):  
Shanaathanan Modchalingam ◽  
Chad Vachon ◽  
Bernard Marius 't Hart ◽  
Denise Henriques

Awareness of task demands is often used during rehabilitation and sports training by providing instructions which appears to accelerate learning and improve performance through explicit motor learning. However, the effects of awareness of perturbations on the changes in estimates of hand position resulting from motor learning are not well understood. In this study, people adapted their reaches to a visuomotor rotation while either receiving instructions on the nature of the perturbation, experiencing a large rotation, or both to generate awareness of the perturbation and increase the contribution of explicit learning. We found that instructions and/or larger rotations allowed people to activate or deactivate part of the learned strategy at will and elicited explicit changes in open-loop reaches, while a small rotation without instructions did not. However, these differences in awareness, and even manipulations of awareness and perturbation size, did not appear to affect learning-induced changes in hand-localization estimates. This was true when estimates of the adapted hand location reflected changes in proprioception, produced when the hand was displaced by a robot, and also when hand location estimates were based on efferent-based predictions of self-generated hand movements. In other words, visuomotor adaptation led to significant shifts in predicted and perceived hand location that were not modulated by either instruction or perturbation size. Our results indicate that not all outcomes of motor learning benefit from an explicit awareness of the task. Particularly, proprioceptive recalibration and the updating of predicted sensory consequences appear to be largely implicit. (data: DOI 10.17605/OSF.IO/MX5U2, preprint: DOI[url])

2018 ◽  
Author(s):  
Shanaathanan Modchalingam ◽  
Chad Michael Vachon ◽  
Bernard Marius ’t Hart ◽  
Denise Y. P. Henriques

ABSTRACTExplicit awareness of a task is often evoked during rehabilitation and sports training with the intention of accelerating learning and improving performance. However, the effects of awareness of perturbations on the resulting sensory and motor changes produced during motor learning are not well understood. Here, we use explicit instructions as well as large rotation sizes to generate awareness of the perturbation during a visuomotor rotation task and test the resulting changes in both perceived and predicted sensory consequences as well as implicit motor changes.We split participants into 4 groups which differ in both magnitude of the rotation (either 30° or 60°) during adaptation, and whether they receive a strategy to counter the rotation or not prior to adaptation. Performance benefits of explicit instruction are largest during early adaptation but continued to lead to improved performance through 90 trials of training. We show that with either instruction, or with large perturbations, participants become aware of countering the rotation. However, we find a base amount of implicit learning, with equal magnitudes, across all groups, even when asked to exclude any strategies while reaching with no visual feedback of the hand.Participants also estimate the location of the unseen hand when it is moved by the robot (passive localization) and when they generate their own movement (active localization) following adaptation. These learning-induced shifts in estimates of hand position reflect both proprioceptive recalibration and updates in the predicted consequences of movements. We find that these estimates of felt hand position, which reflect updates in both proprioception and efference based estimates of hand position, shift significantly for all groups and were not modulated by either instruction or perturbation size.Our results indicate that not all processes of motor learning benefit from an explicit awareness of the task. Particularly, proprioceptive recalibration and the updating of predicted sensory consequences are largely implicit processes.


2018 ◽  
Author(s):  
Ahmed A. Mostafa ◽  
Bernard Marius ’t Hart ◽  
Denise Y.P. Henriques

AbstractAn accurate estimate of limb position is necessary for movement planning, before and after motor learning. Where we localize our unseen hand after a reach depends on felt hand position, or proprioception, but in studies and theories on motor adaptation this is quite often neglected in favour of predicted sensory consequences based on efference copies of motor commands. Both sources of information should contribute, so here we set out to further investigate how much of hand localization depends on proprioception and how much on predicted sensory consequences. We use a training paradigm combining robot controlled hand movements with rotated visual feedback that eliminates the possibility to update predicted sensory consequences (‘exposure training’), but still recalibrates proprioception, as well as a classic training paradigm with self-generated movements in another set of participants. After each kind of training we measure participants’ hand location estimates based on both efference-based predictions and afferent proprioceptive signals with self-generated hand movements (‘active localization’) as well as based on proprioception only with robot-generated movements (‘passive localization’). In the exposure training group, we find indistinguishable shifts in passive and active hand localization, but after classic training, active localization shifts more than passive, indicating a contribution from updated predicted sensory consequences. Both changes in open-loop reaches and hand localization are only slightly smaller after exposure training as compared to after classic training, confirming that proprioception plays a large role in estimating limb position and in planning movements, even after adaptation. (data: https://doi.org/10.17605/osf.io/zfdth, preprint: https://doi.org/10.1101/384941)


2015 ◽  
Vol 113 (10) ◽  
pp. 3836-3849 ◽  
Author(s):  
Krista M. Bond ◽  
Jordan A. Taylor

There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks.


2019 ◽  
Author(s):  
Puneet Singh ◽  
Abhishek Lenka ◽  
Albert Stezin ◽  
Ketan Jhunjhunwala ◽  
Pramod Kumar Pal ◽  
...  

AbstractIt is commonly thought that visuomotor adaptation is mediated by the cerebellum while reinforcement learning is mediated by the basal ganglia. In contrast to this strict dichotomy, we demonstrate a role for the basal ganglia in visuomotor adaptation (error-based motor learning) in patients with Parkinson’s disease (PD) by comparing the degree of motor learning in the presence and absence of dopamine medication. We further show similar modulation of learning rates in the presence and absence of subthalamic deep brain stimulation. We also report that reinforcement is an essential component of visuomotor adaptation by demonstrating the lack of motor learning in patients with PD during the ON-dopamine state relative to the OFF-dopamine state in the absence of a reinforcement signal. Taken together, these results suggest that the basal ganglia modulate the gain of visuomotor adaptation based on the reinforcement received at the end of the trial.


2015 ◽  
Vol 113 (7) ◽  
pp. 2302-2308 ◽  
Author(s):  
Jinsung Wang ◽  
Yuming Lei ◽  
Jeffrey R. Binder

The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation ( experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer ( experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer.


2019 ◽  
Author(s):  
Susen Werner ◽  
Heiko K. Strüder ◽  
Opher Donchin

AbstractPrevious studies compared the effects of gradual and sudden adaptation on intermanual transfer to find out whether transfer depends on awareness of the perturbation. Results from different groups were contradictory. Since results of our own study suggest that awareness depends on perturbation size, we hypothesize that awareness-related intermanual transfer will only appear after adaptation to a large, sudden perturbation but not after adaptation to a small sudden perturbation or a gradual perturbation, large or small. To confirm this, four groups (S30, G30, S75, G75) of subjects performed out-and-back reaching movements with their right arm. In a baseline block, they received veridical visual feedback of hand position. In the subsequent adaptation block, feedback was rotated by 30 deg (S30, G30) or 75 deg (S75, G75). This rotation was either introduced suddenly (S30, S75) or gradually in steps of 3 deg (G30, G75). After the adaptation block, subjects did an awareness test comprising exclusion and inclusion conditions. The experiment concluded with an intermanual transfer block, in which movements were performed with the left arm under rotated feedback, and a washout block again under veridical feedback. We used a hierarchical Bayesian model to estimate individual movement directions and group averages. The movement directions in different conditions were then used to calculate group and individual indexes of adaptation, awareness, unawareness, transfer and washout. Both awareness and transfer were larger in S75 than in other groups, while unawareness and washout were smaller in S75 than in other groups. Furthermore, the size of awareness indices correlated to intermanual transfer across subjects, even when transfer was normalized to final adaptation level. Thus, we show for the first time that the amount of intermanual transfer directly relates to the extent of awareness of the learned perturbation.


Author(s):  
Eugene Poh ◽  
Naser Al-Fawakari ◽  
Rachel Tam ◽  
Jordan A. Taylor ◽  
Samuel D. McDougle

ABSTRACTTo generate adaptive movements, we must generalize what we have previously learned to novel situations. The generalization of learned movements has typically been framed as a consequence of neural tuning functions that overlap for similar movement kinematics. However, as is true in many domains of human behavior, situations that require generalization can also be framed as inference problems. Here, we attempt to broaden the scope of theories about motor generalization, hypothesizing that part of the typical motor generalization function can be characterized as a consequence of top-down decisions about different movement contexts. We tested this proposal by having participants make explicit similarity ratings over traditional contextual dimensions (movement directions) and abstract contextual dimensions (target shape), and perform a visuomotor adaptation generalization task where trials varied over those dimensions. We found support for our predictions across five experiments, which revealed a tight link between subjective similarity and motor generalization. Our findings suggest that the generalization of learned motor behaviors is influenced by both low-level kinematic features and high-level inferences.


Author(s):  
Wanying Jiang ◽  
Yajie Liu ◽  
Yuqing Bi ◽  
Kunlin Wei

Exposure to task-irrelevant feedback leads to perceptual learning, but its effect on motor learning has been understudied. Here we asked human participants to reach a visual target with a hand-controlled cursor while observing another cursor moving independently in a different direction. While the task-irrelevant feedback did not change the main task's performance, it elicited robust savings in subsequent adaptation to classical visuomotor rotation perturbation. We demonstrated that the saving effect resulted from a faster formation of strategic learning through a series of experiments, not from gains in the implicit learning process. Furthermore, the saving effect was robust against drastic changes in stimulus features (i.e., rotation size or direction) or task types (i.e., for motor adaptation and skill learning). However, the effect was absent when the task-irrelevant feedback did not carry the visuomotor relationship embedded in visuomotor rotation. Thus, though previous research on perceptual learning has related task-irrelevant feedback to changes in early sensory processes, our findings support its role in acquiring abstract sensorimotor knowledge during motor learning. Motor learning studies have traditionally focused on task-relevant feedback, but our study extends the scope of feedback processes and sheds new light on the dichotomy of explicit and implicit learning in motor adaptation as well as motor structure learning.


2007 ◽  
Vol 98 (6) ◽  
pp. 3614-3626 ◽  
Author(s):  
Claude Ghez ◽  
Robert Scheidt ◽  
Hank Heijink

We previously reported that the kinematics of reaching movements reflect the superimposition of two separate control mechanisms specifying the hand's spatial trajectory and its final equilibrium position. We now asked whether the brain maintains separate representations of the spatial goals for planning hand trajectory and final position. One group of subjects learned a 30° visuomotor rotation about the hand's starting point while performing a movement reversal task (“slicing”) in which they reversed direction at one target and terminated movement at another. This task required accuracy in acquiring a target mid-movement. A second group adapted while moving to—and stabilizing at—a single target (“reaching”). This task required accuracy in specifying an intended final position. We examined how learning in the two tasks generalized both to movements made from untrained initial positions and to movements directed toward untrained targets. Shifting initial hand position had differential effects on the location of reversals and final positions: Trajectory directions remained unchanged and reversal locations were displaced in slicing whereas final positions of both reaches and slices were relatively unchanged. Generalization across directions in slicing was consistent with a hand-centered representation of desired reversal point as demonstrated previously for this task whereas the distributions of final positions were consistent with an eye-centered representation as found previously in studies of pointing in three-dimensional space. Our findings indicate that the intended trajectory and final position are represented in different coordinate frames, reconciling previous conflicting claims of hand-centered (vectorial) and eye-centered representations in reach planning.


2009 ◽  
Vol 101 (5) ◽  
pp. 2263-2269 ◽  
Author(s):  
Aymar de Rugy ◽  
Mark R. Hinder ◽  
Daniel G. Woolley ◽  
Richard G. Carson

Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ∼20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.


Sign in / Sign up

Export Citation Format

Share Document