scholarly journals Establishment of murine in vitro blood-brain barrier models using immortalized cell lines: co-cultures of brain endothelial cells, astrocytes, and neurons

2018 ◽  
Author(s):  
Fakhriedzwan Idris ◽  
Siti Hanna Muharram ◽  
Zainun Zaini ◽  
Suwarni Diah

AbstractBlood-brain barrier (BBB) is a selective barrier formed by the endothelial cells that line cerebral microvessels. It serves as a physical barrier due to the presence of complex tight junctions between adjacent endothelial cells which limits the paracellular movement of most molecules across the BBB. Many in vitro models of the BBB have been established to mimic these in vivo properties with limited success. In this study, we described the properties of a cell-based murine in vitro BBB model in five configurations constructed using immortalized cell lines in a 12-well format Transwell system: murine brain endothelial cells (bEnd.3) grown in a monoculture, or as co-culture in contact with astrocytes, or without contact with astrocytes or neurons, and triple co-culture combining the three cell lines. We found that only contact and triple co-culture model closely mimic the in vivo BBB tightness as evaluated by apparent permeability (Papp) of sucrose and albumin producing the lowest Papp values of 0.56 ± 0.16 × 10−6 cms−1 and 3.30 ± 0.51 × 10−6 cms−1, respectively, obtained in triple co-culture model. Co-culturing of bEnd.3 with astrocytes increased the expression of occludin as shown by western blot analysis, and immunohistochemistry showed an increase in peripheral localization of occludin and claudin-5. In addition, we found conditioned media were able to increase in vitro BBB model tightness through the modulation of tight junction proteins localization. We conclude that the presence of astrocytes and neurons in close proximity to brain endothelial cells is essential to produce a tight in vitro BBB model.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marlyn D. Laksitorini ◽  
Vinith Yathindranath ◽  
Wei Xiong ◽  
Sabine Hombach-Klonisch ◽  
Donald W. Miller

AbstractWnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0187017 ◽  
Author(s):  
Shu Yang ◽  
Shenghui Mei ◽  
Hong Jin ◽  
Bin Zhu ◽  
Yue Tian ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1484
Author(s):  
Daisuke Watanabe ◽  
Shinsuke Nakagawa ◽  
Yoichi Morofuji ◽  
Andrea E. Tóth ◽  
Monika Vastag ◽  
...  

Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.


2003 ◽  
Vol 31 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Hanna Tähti ◽  
Heidi Nevala ◽  
Tarja Toimela

The purpose of this paper is to review the current state of development of advanced in vitro blood–brain barrier (BBB) models. The BBB is a special capillary bed that separates the blood from the central nervous system (CNS) parenchyma. Astrocytes maintain the integrity of the BBB, and, without astrocytic contacts, isolated brain capillary endothelial cells in culture lose their barrier characteristics. Therefore, when developing in vitro BBB models, it is important to add astrocytic factors into the culture system. Recently, novel filter techniques and co-culture methods have made it possible to develop models which resemble the in vivo functions of the BBB in an effective way. With a BBB model, kinetic factors can be added into the in vitro batteries used for evaluating the neurotoxic potential of chemicals. The in vitro BBB model also represents a useful tool for the in vitro prediction of the BBB permeability of drugs, and offers the possibility to scan a large number of drugs for their potential to enter the CNS. Cultured monolayers of brain endothelial cell lines or selected epithelial cell lines, combined with astrocyte and neuron cultures, form a novel three-dimensional technique for the screening of neurotoxic compounds.


2008 ◽  
Vol 295 (4) ◽  
pp. R1099-R1108 ◽  
Author(s):  
Ferenc Domoki ◽  
Béla Kis ◽  
Tamás Gáspár ◽  
Ferenc Bari ◽  
David W. Busija

Cerebral microvascular endothelial cells (CMVECs) have recently been implicated as targets of excitotoxic injury by l-glutamate (l-glut) or N-methyl-d-aspartate (NMDA) in vitro. However, high levels of l-glut do not compromise the function of the blood-brain barrier in vivo. We sought to determine whether primary cultures of rat and piglet CMVECs or cerebral microvascular pericytes (CMVPCs) are indeed sensitive to l-glut or NMDA. Viability was unaffected by 8-h exposure to 1–10 mM l-glut or NMDA in CMVECs or CMVPCs isolated from both species. Furthermore, neither 1 mM l-glut nor NMDA augmented cell death induced by 12-h oxygen-glucose deprivation in rat CMVECs or by 8-h medium withdrawal in CMVPCs. Additionally, transendothelial electrical resistance of rat CMVEC-astrocyte cocultures or piglet CMVEC cultures were not compromised by up to 24-h exposure to 1 mM l-glut or NMDA. The Ca2+ ionophore calcimycin (5 μM), but not l-glut (1 mM), increased intracellular Ca2+ levels in rat CMVECs and CMVPCs assessed with fluo-4 AM fluorescence and confocal microscopy. CMVEC-dependent pial arteriolar vasodilation to hypercapnia and bradykinin was unaffected by intracarotid infusion of l-glut in anesthetized piglets by closed cranial window/intravital microscopy. We conclude that cerebral microvascular cells are insensitive and resistant to glutamatergic stimuli in accordance with their in vivo role as regulators of potentially neurotoxic amino acids across the blood-brain barrier.


1999 ◽  
Vol 67 (7) ◽  
pp. 3566-3570 ◽  
Author(s):  
Jill A. Hoffman ◽  
Carol Wass ◽  
Monique F. Stins ◽  
Kwang Sik Kim

ABSTRACT The vast majority of cases of gram-negative meningitis in neonates are caused by K1-encapsulated Escherichia coli. The role of the K1 capsule in the pathogenesis of E. coli meningitis was examined with an in vivo model of experimental hematogenousE. coli K1 meningitis and an in vitro model of the blood-brain barrier. Bacteremia was induced in neonatal rats with theE. coli K1 strain C5 (O18:K1) or its K1−derivative, C5ME. Subsequently, blood and cerebrospinal fluid (CSF) were obtained for culture. Viable bacteria were recovered from the CSF of animals infected with E. coli K1 strains only; none of the animals infected with K1− strains had positive CSF cultures. However, despite the fact that their cultures were sterile, the presence of O18 E. coli was demonstrated immunocytochemically in the brains of animals infected with K1− strains and was seen by staining of CSF samples. In vitro, brain microvascular endothelial cells (BMEC) were incubated with K1+ and K1− E. coli strains. The recovery of viable intracellular organisms of the K1+strain was significantly higher than that for the K1−strain (P = 0.0005). The recovery of viable intracellular K1− E. coli bacteria was increased by cycloheximide treatment of BMEC (P = 0.0059) but was not affected by nitric oxide synthase inhibitors or oxygen radical scavengers. We conclude that the K1 capsule is not necessary for the invasion of bacteria into brain endothelial cells but is responsible for helping to maintain bacterial viability during invasion of the blood-brain barrier.


Sign in / Sign up

Export Citation Format

Share Document