scholarly journals Pre-stimulus feedback connectivity biases the content of visual experiences

2018 ◽  
Author(s):  
Elie Rassi ◽  
Andreas Wutz ◽  
Nadia Müller-Voggel ◽  
Nathan Weisz

AbstractOngoing fluctuations in neural excitability and in network-wide activity patterns before stimulus onset have been proposed to underlie variability in near-threshold stimulus detection paradigms, i.e. whether an object is perceived or not. Here, we investigated the impact of pre-stimulus neural fluctuations on the content of perception, i.e. whether one or another object is perceived. We recorded neural activity with magnetoencephalography before and while participants briefly viewed an ambiguous image, the Rubin face/vase illusion, and required them to report their perceived interpretation on each trial. Using multivariate pattern analysis, we showed robust decoding of the perceptual report during the post-stimulus period. Applying source localization to the classifier weights suggested early recruitment of V1 and ~160 ms recruitment of category-sensitive FFA. These post-stimulus effects were accompanied by stronger oscillatory power in the gamma frequency band for face vs vase reports. In pre-stimulus intervals, we found no differences in oscillatory power between face vs. vase reports neither in V1 nor in FFA, indicating similar levels of neural excitability. Despite this, we found stronger connectivity between V1 and FFA prior to face reports for low-frequency oscillations. Specifically, the strength of pre-stimulus feedback connectivity (i.e. Granger causality) from FFA to V1 predicted not only the category of the upcoming percept, but also the strength of post-stimulus neural activity associated with the percept. Our work shows that pre-stimulus network states can help shape future processing in category-sensitive brain regions and in this way bias the content of visual experiences.

2019 ◽  
Vol 116 (32) ◽  
pp. 16056-16061 ◽  
Author(s):  
Elie Rassi ◽  
Andreas Wutz ◽  
Nadia Müller-Voggel ◽  
Nathan Weisz

Ongoing fluctuations in neural excitability and in networkwide activity patterns before stimulus onset have been proposed to underlie variability in near-threshold stimulus detection paradigms—that is, whether or not an object is perceived. Here, we investigated the impact of prestimulus neural fluctuations on the content of perception—that is, whether one or another object is perceived. We recorded neural activity with magnetoencephalography (MEG) before and while participants briefly viewed an ambiguous image, the Rubin face/vase illusion, and required them to report their perceived interpretation in each trial. Using multivariate pattern analysis, we showed robust decoding of the perceptual report during the poststimulus period. Applying source localization to the classifier weights suggested early recruitment of primary visual cortex (V1) and ∼160-ms recruitment of the category-sensitive fusiform face area (FFA). These poststimulus effects were accompanied by stronger oscillatory power in the gamma frequency band for face vs. vase reports. In prestimulus intervals, we found no differences in oscillatory power between face vs. vase reports in V1 or in FFA, indicating similar levels of neural excitability. Despite this, we found stronger connectivity between V1 and FFA before face reports for low-frequency oscillations. Specifically, the strength of prestimulus feedback connectivity (i.e., Granger causality) from FFA to V1 predicted not only the category of the upcoming percept but also the strength of poststimulus neural activity associated with the percept. Our work shows that prestimulus network states can help shape future processing in category-sensitive brain regions and in this way bias the content of visual experiences.


2021 ◽  
Author(s):  
Ignacio Saez ◽  
Jack Lin ◽  
Edward Chang ◽  
Josef Parvizi ◽  
Robert T. Knight ◽  
...  

AbstractHuman neuroimaging and animal studies have linked neural activity in orbitofrontal cortex (OFC) to valuation of positive and negative outcomes. Additional evidence shows that neural oscillations, representing the coordinated activity of neuronal ensembles, support information processing in both animal and human prefrontal regions. However, the role of OFC neural oscillations in reward-processing in humans remains unknown, partly due to the difficulty of recording oscillatory neural activity from deep brain regions. Here, we examined the role of OFC neural oscillations (<30Hz) in reward processing by combining intracranial OFC recordings with a gambling task in which patients made economic decisions under uncertainty. Our results show that power in different oscillatory bands are associated with distinct components of reward evaluation. Specifically, we observed a double dissociation, with a selective theta band oscillation increase in response to monetary gains and a beta band increase in response to losses. These effects were interleaved across OFC in overlapping networks and were accompanied by increases in oscillatory coherence between OFC electrode sites in theta and beta band during gain and loss processing, respectively. These results provide evidence that gain and loss processing in human OFC are supported by distinct low-frequency oscillations in networks, and provide evidence that participating neuronal ensembles are organized functionally through oscillatory coherence, rather than local anatomical segregation.


2017 ◽  
Vol 114 (17) ◽  
pp. 4519-4524 ◽  
Author(s):  
Weiwei Zhong ◽  
Mareva Ciatipis ◽  
Thérèse Wolfenstetter ◽  
Jakob Jessberger ◽  
Carola Müller ◽  
...  

Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ2). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ2 and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ1) and 120- to 160-Hz (γ3) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.


2020 ◽  
Vol 117 (13) ◽  
pp. 7437-7446 ◽  
Author(s):  
Gaëtan Sanchez ◽  
Thomas Hartmann ◽  
Marco Fuscà ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

An increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving subjective reports of tactile, visual, or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the poststimulus period between sensory modalities, our first experiment uncovered supramodal spatiotemporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g., neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e., whether conscious perception was reported by pressing or withholding a button press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.


2014 ◽  
Vol 112 (1) ◽  
pp. 273-278 ◽  
Author(s):  
Catherine Perrodin ◽  
Christoph Kayser ◽  
Nikos K. Logothetis ◽  
Christopher I. Petkov

When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face–voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.


2017 ◽  
Author(s):  
Gaëtan Sanchez ◽  
Thomas Hartmann ◽  
Marco Fuscà ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

AbstractAn increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving tactile, visual or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the post-stimulus period between sensory modalities, our first experiment uncovered supramodal spatio-temporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g. neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e. whether conscious perception was reported by pressing or withholding a button-press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.


2021 ◽  
Author(s):  
Atulya Iyengar ◽  
Chun-Fang Wu

Hypersynchronous neural activity is a characteristic feature of seizures. Although many Drosophila mutants of epilepsy-related genes display clear behavioral spasms and motor unit hyperexcitability, field potential measurements of aberrant hypersynchronous activity across brain regions during seizures have yet to be described. Here, we report a straightforward method to observe local field potentials (LFPs) from the Drosophila brain to monitor ensemble neural activity during seizures in behaving tethered flies. High frequency stimulation across the brain reliably triggers a stereotypic sequence of electroconvulsive seizure (ECS) spike discharges readily detectable in the dorsal longitudinal muscle (DLM) and coupled with behavioral spasms. During seizure episodes, the LFP signal displayed characteristic large-amplitude oscillations with a stereotypic temporal correlation to DLM flight muscle spiking. ECS-related LFP events were clearly distinct from rest- and flight-associated LFP patterns. We further characterized the LFP activity during different types of seizures originating from genetic and pharmacological manipulations. In the 'bang-sensitive' sodium channel mutant bangsenseless (bss), the LFP pattern was prolonged, and the temporal correlation between LFP oscillations and DLM discharges was altered. Following administration of the pro-convulsant GABAA blocker picrotoxin, we uncovered a qualitatively different LFP activity pattern, which consisted of a slow (1-Hz), repetitive, waveform, closely coupled with DLM bursting and behavioral spasms. Our approach to record brain LFPs presents an initial framework for electrophysiological analysis of the complex brain-wide activity patterns in the large collection of Drosophila excitability mutants.


2016 ◽  
Author(s):  
Guillaume Hennequin ◽  
Yashar Ahmadian ◽  
Daniel B. Rubin ◽  
Máté Lengyel ◽  
Kenneth D. Miller

SummaryVariability and correlations in cortical activity are ubiquitously modulated by stimuli. Correlated variability is quenched following stimulus onset across multiple cortical areas, suppressing low-frequency components of the LFP and of Vm-LFP coherence. Modulation of Fano factors and correlations in area MT is tuned for stimulus direction. What circuit mechanisms underly these behaviors? We show that a simple model circuit, the stochastic Stabilized Supralinear Network (SSN), robustly explains these results. Stimuli modulate variability by modifying two forms of effective connectivity between activity patterns that characterize excitatory-inhibitory (E/I) circuits. Increases in the strength with which activity patterns inhibit themselves reduce correlated variability, while increases in feedforward connections between patterns (transforming E/I imbalance into balanced fluctuations) increase variability. These results suggest an operating regime of cortical dynamics that involves fast fluctuations and fast responses to stimulus changes, unlike previous models of variability suppression through suppression of chaos or networks with multiple attractors.


2020 ◽  
Author(s):  
Gaoxiong Duan ◽  
Ya Chen ◽  
Yong Pang ◽  
Zhuo Feng ◽  
Hai Liao ◽  
...  

Abstract Background: Premenstrual Syndrome(PMS) is a prevalent gynecological disease and is significantly associated with abnormal neural activity. Acupuncture is an effective treatment on PMS in clinical practice. However, few studies have been performed to investigate whether acupuncture might modulate the abnormal neural activity in patients with PMS. Thereby, the aim of the study was to assess alterations of the brain activity induced by acupuncture stimulation in PMS patients. Methods: 20 PMS patients were enrolled in this study. All patients received a 6-min resting-state functional magnetic resonance imaging(rs-fMRI) scan before and after electro-acupuncturing stimulation (EAS) at Sanyinjiao (SP6) acupoint in the late luteal phase of menstrual. Applied the fractional amplitude of low frequency fluctuation(fALFF) method to examine EAS-related brain changes in PMS patients. Results: Compared with pre-EAS at SP6, increased fALFF value in several brain regions induced by SP6, including brainstem, right thalamus, bilateral insula, right paracentral lobule, bilateral cerebellum, meanwhile, decreased fALFF in the left cuneus, right precuneus, left inferior temporal cortex. Conclusions: Our findings provide imaging evidence to support that SP6-related acupuncture stimulation may modulate the neural activity in patients with PMS. This study may partly interpret the neural mechanisms of acupuncture at SP6 which is used to treat PMS patients in clinical. Trial registration:The study was registered on http://www.chictr.org.cn, the Clinical Trial Registration Number is ChiCTR-OPC-15005918, registry in 29/01/2015.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Amelia Padmore ◽  
Martin R Nelson ◽  
Nadia Chuzhanova ◽  
Jonathan J Crofts

Abstract Understanding structure--function relationships in the brain remains an important challenge in neuroscience. However, whilst structural brain networks are intrinsically directed, due to the prevalence of chemical synapses in the cortex, most studies in network neuroscience represent the brain as an undirected network. Here, we explore the role that directionality plays in shaping transition dynamics of functional brain states. Using a system of Hopfield neural elements with heterogeneous structural connectivity given by different species and parcellations (cat, Caenorhabditis elegans and two macaque networks), we investigate the effect of removing directionality of connections on brain capacity, which we quantify via its ability to store attractor states. In addition to determining large numbers of fixed-point attractor sets, we deploy the recently developed basin stability technique in order to assess the global stability of such brain states, which can be considered a proxy for network state robustness. Our study indicates that not only can directed network topology have a significant effect on the information capacity of connectome-based networks, but it can also impact significantly the domains of attraction of the aforementioned brain states. In particular, we find network modularity to be a key mechanism underlying the formation of neural activity patterns, and moreover, our results suggest that neglecting network directionality has the scope to eliminate states that correlate highly with the directed modular structure of the brain. A numerical analysis of the distribution of attractor states identified a small set of prototypical direction-dependent activity patterns that potentially constitute a `skeleton' of the non-stationary dynamics typically observed in the brain. This study thereby emphasizes the substantial role network directionality can have in shaping the brain's ability to both store and process information.


Sign in / Sign up

Export Citation Format

Share Document