scholarly journals Gene Expression Correlates of the Cortical Network Underlying Sentence Processing

2018 ◽  
Author(s):  
Xiang-Zhen Kong ◽  
Nathalie Tzourio-Mazoyer ◽  
Marc Joliot ◽  
Evelina Fedorenko ◽  
Jia Liu ◽  
...  

AbstractA pivotal question in modern neuroscience is which genes regulate brain circuits that underlie cognitive functions. However, the field is still in its infancy. Here we report an integrated investigation of the high-level language network (i.e., sentence processing network) in the human cerebral cortex, combining regional gene expression profiles, task fMRI, large-scale neuroimaging meta-analysis, and resting-state functional network approaches. We revealed reliable gene expression-functional network correlations using three different network definition strategies, and identified a consensus set of genes related to connectivity within the sentence-processing network. The genes involved showed enrichment for neural development and actin-related functions, as well as association signals with autism, which can involve disrupted language functioning. Our findings help elucidate the molecular basis of the brain’s infrastructure for language. The integrative approach described here will be useful to study other complex cognitive traits.

2020 ◽  
Vol 1 (1) ◽  
pp. 77-103 ◽  
Author(s):  
Xiang-Zhen Kong ◽  
Nathalie Tzourio-Mazoyer ◽  
Marc Joliot ◽  
Evelina Fedorenko ◽  
Jia Liu ◽  
...  

A pivotal question in modern neuroscience is which genes regulate brain circuits that underlie cognitive functions. However, the field is still in its infancy. Here we report an integrated investigation of the high-level language network (i.e., sentence-processing network) in the human cerebral cortex, combining regional gene expression profiles, task fMRI, large-scale neuroimaging meta-analysis, and resting-state functional network approaches. We revealed reliable gene expression–functional network correlations using three different network definition strategies, and identified a consensus set of genes related to connectivity within the sentence-processing network. The genes involved showed enrichment for neural development and actin-related functions, as well as association signals with autism, which can involve disrupted language functioning. Our findings help elucidate the molecular basis of the brain’s infrastructure for language. The integrative approach described here will be useful for studying other complex cognitive traits.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Yuchun Guo ◽  
Gabriel S. Eichler ◽  
Ying Feng ◽  
Donald E. Ingber ◽  
Sui Huang

Genome-wide gene expression profile studies encompass increasingly large number of samples, posing a challenge to their presentation and interpretation without losing the notion that each transcriptome constitutes a complex biological entity. Much like pathologists who visually analyze information-rich histological sections as a whole, we propose here an integrative approach. We use a self-organizing maps-based software, the gene expression dynamics inspector (GEDI) to analyze gene expression profiles of various lung tumors. GEDI allows the comparison of tumor profiles based on direct visual detection of transcriptome patterns. Such intuitive “gestalt” perception promotes the discovery of interesting relationships in the absence of an existing hypothesis. We uncovered qualitative relationships between squamous cell tumors, small-cell tumors, and carcinoid tumor that would have escaped existing algorithmic classifications. These results suggest that GEDI may be a valuable explorative tool that combines global and gene-centered analyses of molecular profiles from large-scale microarray experiments.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8135 ◽  
Author(s):  
Salma Begum Bhyan ◽  
Li Zhao ◽  
YongKiat Wee ◽  
Yining Liu ◽  
Min Zhao

Endometriosis is a chronic disease occurring during the reproductive stage of women. Although there is only limited association between endometriosis and gynecological cancers with regard to clinical features, the molecular basis of the relationship between these diseases is unexplored. We conducted a systematic study by integrating literature-based evidence, gene expression and large-scale cancer genomics data in order to reveal any genetic relationships between endometriosis and cancers in women. We curated 984 endometriosis-related genes from 3270 PubMed articles and then conducted a meta-analysis of the two public gene expression profiles related to endometriosis which identified Differential Expression of Genes (DEGs). Following an overlapping analysis, we identified 39 key endometriosis-related genes common in both literature and DEG analysis. Finally, the functional analysis confirmed that all the 39 genes were associated with the vital processes of tumour formation and cancer progression and that two genes (PGR and ESR1) were common to four cancers of women. From network analysis, we identified a novel linker gene, C3AR1, which had not been implicated previously in endometriosis. The shared genetic mechanisms of endometriosis and cancers in women identified in this study provided possible new avenues of multiple disease management and treatments through early diagnosis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Ren ◽  
Ting-You Wang ◽  
Leah C. Anderton ◽  
Qi Cao ◽  
Rendong Yang

Abstract Background Long non-coding RNAs (lncRNAs) are a growing focus in cancer research. Deciphering pathways influenced by lncRNAs is important to understand their role in cancer. Although knock-down or overexpression of lncRNAs followed by gene expression profiling in cancer cell lines are established approaches to address this problem, these experimental data are not available for a majority of the annotated lncRNAs. Results As a surrogate, we present lncGSEA, a convenient tool to predict the lncRNA associated pathways through Gene Set Enrichment Analysis of gene expression profiles from large-scale cancer patient samples. We demonstrate that lncGSEA is able to recapitulate lncRNA associated pathways supported by literature and experimental validations in multiple cancer types. Conclusions LncGSEA allows researchers to infer lncRNA regulatory pathways directly from clinical samples in oncology. LncGSEA is written in R, and is freely accessible at https://github.com/ylab-hi/lncGSEA.


2009 ◽  
Vol 8 (4) ◽  
pp. 207-214 ◽  
Author(s):  
An-Ting T. Lu ◽  
Shelley R. Salpeter ◽  
Anthony E. Reeve ◽  
Steven Eschrich ◽  
Patrick G. Johnston ◽  
...  

Neurology ◽  
2017 ◽  
Vol 89 (16) ◽  
pp. 1676-1683 ◽  
Author(s):  
Ron Shamir ◽  
Christine Klein ◽  
David Amar ◽  
Eva-Juliane Vollstedt ◽  
Michael Bonin ◽  
...  

Objective:To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples).Methods:Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks.Results:A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E–6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E–4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1, ATP5A1, and VDAC3.Conclusions:We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


2005 ◽  
Vol 289 (4) ◽  
pp. L545-L553 ◽  
Author(s):  
Joseph Zabner ◽  
Todd E. Scheetz ◽  
Hakeem G. Almabrazi ◽  
Thomas L. Casavant ◽  
Jian Huang ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel regulated by phosphorylation. Most of the disease-associated morbidity is the consequence of chronic lung infection with progressive tissue destruction. As an approach to investigate the cellular effects of CFTR mutations, we used large-scale microarray hybridization to contrast the gene expression profiles of well-differentiated primary cultures of human CF and non-CF airway epithelia grown under resting culture conditions. We surveyed the expression profiles for 10 non-CF and 10 ΔF508 homozygote samples. Of the 22,283 genes represented on the Affymetrix U133A GeneChip, we found evidence of significant changes in expression in 24 genes by two-sample t-test ( P < 0.00001). A second, three-filter method of comparative analysis found no significant differences between the groups. The levels of CFTR mRNA were comparable in both groups. There were no significant differences in the gene expression patterns between male and female CF specimens. There were 18 genes with significant increases and 6 genes with decreases in CF relative to non-CF samples. Although the function of many of the differentially expressed genes is unknown, one transcript that was elevated in CF, the KCl cotransporter (KCC4), is a candidate for further study. Overall, the results indicate that CFTR dysfunction has little direct impact on airway epithelial gene expression in samples grown under these conditions.


Sign in / Sign up

Export Citation Format

Share Document