scholarly journals RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates

2018 ◽  
Author(s):  
Marina Garcia-Jove Navarro ◽  
Shunnichi Kashida ◽  
Racha Chouaib ◽  
Sylvie Souquere ◽  
Gerard Pierron ◽  
...  

SummaryLiquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold “ArtiG” to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2020 ◽  
Author(s):  
Florian Geiger ◽  
Guido Papa ◽  
William E. Arter ◽  
Julia Acker ◽  
Kadi L. Saar ◽  
...  

AbstractRNA viruses induce formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation. We demonstrate that rotavirus proteins NSP5 and NSP2 undergo phase separation in vitro and form RNA-rich condensates in vivo that can be reversibly dissolved by aliphatic diols. During infection, these RNA-protein condensates became less dynamic and impervious to aliphatic diols, indicating a transition from a liquid to solid state. Some aspects of assembly of rotavirus replication factories mirror the formation of cytoplasmic ribonucleoprotein granules, while the selective enrichment of viral transcripts appears to be a unique feature of these condensates. Such complex RNA-protein condensates that underlie replication of RNA viruses represent an attractive target for developing novel therapeutic approaches.


2020 ◽  
Vol 21 (16) ◽  
pp. 5908 ◽  
Author(s):  
Alain A. M. André ◽  
Evan Spruijt

Biomolecular condensates play a key role in organizing cellular fluids such as the cytoplasm and nucleoplasm. Most of these non-membranous organelles show liquid-like properties both in cells and when studied in vitro through liquid–liquid phase separation (LLPS) of purified proteins. In general, LLPS of proteins is known to be sensitive to variations in pH, temperature and ionic strength, but the role of crowding remains underappreciated. Several decades of research have shown that macromolecular crowding can have profound effects on protein interactions, folding and aggregation, and it must, by extension, also impact LLPS. However, the precise role of crowding in LLPS is far from trivial, as most condensate components have a disordered nature and exhibit multiple weak attractive interactions. Here, we discuss which factors determine the scope of LLPS in crowded environments, and we review the evidence for the impact of macromolecular crowding on phase boundaries, partitioning behavior and condensate properties. Based on a comparison of both in vivo and in vitro LLPS studies, we propose that phase separation in cells does not solely rely on attractive interactions, but shows important similarities to segregative phase separation.


2021 ◽  
Author(s):  
Nazanin Farahi ◽  
Tamas Lazar ◽  
Shoshana J. Wodak ◽  
Peter Tompa ◽  
Rita Pancsa

AbstractLiquid-liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles (MLOs), i.e. functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integration of data on LLPS-associated proteins from dedicated databases revealed only modest overlap between them and resulted in a confident set of 89 human LLPS driver proteins. Since LLPS is highly concentration-sensitive, the underlying experiments are often criticized for applying higher-than-physiological protein concentrations. To clarify this issue, we performed a naive comparison of in vitro applied and quantitative proteomics-derived protein concentrations and discuss a number of considerations that rationalize the choice of apparently high in vitro concentrations in most LLPS studies. The validity of in vitro LLPS experiments is further supported by in vivo phase-separation experiments and by the observation that the corresponding genes show a strong propensity for dosage sensitivity. This observation implies that the availability of the respective proteins is tightly regulated in cells to avoid erroneous condensate formation. In all, we propose that although local protein concentrations are practically impossible to determine in cells, proteomics-derived cellular concentrations should rather be considered as lower limits of protein concentrations, than strict upper bounds, to be respected by in vitro experiments.


2018 ◽  
Author(s):  
Roubina Tatavosian ◽  
Samantha Kent ◽  
Kyle Brown ◽  
Tingting Yao ◽  
Huy Nguyen Duc ◽  
...  

AbstractPolycomb group (PcG) proteins are master regulators of development and differentiation. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the nucleus of cells and these condensates are the physical sites of PcG-targeted gene silencing. However, the physiochemical principles underlying the PcG condensate formation remain unknown. Here we show that Polycomb repressive complex 1 (PRC1) protein Cbx2, one member of the Cbx family proteins, contains a long stretch of intrinsically disordered region (IDR). Cbx2 undergoes phase separation to form condensates. Cbx2 condensates exhibit liquid-like properties and can concentrate DNA and nucleosomes. We demonstrate that the conserved residues within the IDR promote the condensate formation in vitro and in vivo. We further indicate that H3K27me3 has minimal effects on the Cbx2 condensate formation while depletion of core PRC1 subunits facilitates the condensate formation. Thus, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that PcG-bound chromatin is in part organized through phase-separated condensates.


2018 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F. Mugler ◽  
...  

AbstractProcessing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. We recently identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo [Mugler et al., 2016]. Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


2021 ◽  
Vol 22 (6) ◽  
pp. 3017
Author(s):  
Nazanin Farahi ◽  
Tamas Lazar ◽  
Shoshana J. Wodak ◽  
Peter Tompa ◽  
Rita Pancsa

Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Xuemei Zhang ◽  
Michael Vigers ◽  
James McCarty ◽  
Jennifer N. Rauch ◽  
Glenn H. Fredrickson ◽  
...  

Tau protein in vitro can undergo liquid–liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state. Readily observable, PRD-derived cytoplasmic condensates underwent fusion and fluorescence recovery after photobleaching consistent with the PRD LLPS in vitro. Simulations demonstrated that the charge properties of the PRD predicted phase separation. Tau PRD formed heterotypic condensates with EB1, a regulator of plus-end microtubule dynamic instability. The specific domain properties of the MTBD and PRD serve distinct but mutually complementary roles that use LLPS in a cellular context to implement emergent functionalities that scale their relationship from binding α-beta tubulin heterodimers to the larger proportions of microtubules.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F Mugler ◽  
...  

Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid–liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


2021 ◽  
Author(s):  
Meng Zhang ◽  
Cesar D Diaz-Celis ◽  
Bibiana Onoa ◽  
Cristhian Canari-Chumpitaz ◽  
Katherinne I. Requejo ◽  
...  

It has been proposed that the intrinsic property of nucleosome arrays to undergo liquid-liquid phase separation (LLPS) in vitro is responsible for chromatin domain organization in vivo. However, understanding nucleosomal LLPS has been hindered by the challenge to characterize the structure of resulting heterogeneous condensates. We used cryo-electron tomography and deep learning-based 3D reconstruction/segmentation to determine the molecular organization of condensates at various stages of LLPS. We show that nucleosomal LLPS involves a two-step process: a spinodal decomposition process yielding irregular condensates, followed by their unfavorable conversion into more compact, spherical nuclei that grow into larger spherical aggregates through accretion of spinodal material or by fusion with other spherical condensates. Histone H1 catalyzes more than 10-fold the spinodal-to-spherical conversion. We propose that this transition involves exposure of nucleosome hydrophobic surfaces resulting in modified inter-nucleosome interactions. These results suggest a physical mechanism by which chromatin may transition from interphase to metaphase structures.


Sign in / Sign up

Export Citation Format

Share Document