scholarly journals DUETT quantitatively identifies known and novel events in nascent RNA structural dynamics from chemical probing data

2018 ◽  
Author(s):  
Albert Y. Xue ◽  
Angela M Yu ◽  
Julius B. Lucks ◽  
Neda Bagheri

AbstractMotivationRNA molecules can undergo complex structural dynamics, especially during transcription, which influence their biological functions. Recently developed high-throughput chemical probing experiments study RNA cotranscriptional folding to generate nucleotide-resolution ‘reactivities’ for each length of a growing nascent RNA and reflect structural dynamics. However, the manual annotation and qualitative interpretation of reactivity across these large datasets can be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and systematic approach to automatically detect RNA folding events from these datasets to reduce human bias/error, standardize event discovery, and generate hypotheses about RNA folding trajectories for further analysis and experimental validation.ResultsDetection ofUnknownEvents withTunableThresholds (DUETT) identifies RNA structural transitions in cotranscriptional RNA chemical probing datasets. DUETT employs a feedback control-inspired method and a linear regression approach and relies on interpretable and independently tunable parameter thresholds to match qualitative user expectations with quantitatively identified folding events. We validate the approach by identifying known RNA structural transitions within the cotranscriptional folding pathways of theEscherichia colisignal recognition particle (SRP) RNA and theBacillus cereus crcBfluoride riboswitch. We identify previously overlooked features of these datasets such as heightened reactivity patterns in the SRP RNA about 12 nucleotide lengths before base pair rearrangement. We then apply a sensitivity analysis to identify tradeoffs when choosing parameter thresholds. Finally, we show that DUETT is tunable across a wide range of contexts, enabling flexible application to study broad classes of RNA folding mechanisms.Availabilityhttps://github.com/BagheriLab/[email protected],[email protected]


2019 ◽  
Vol 35 (24) ◽  
pp. 5103-5112
Author(s):  
Albert Y Xue ◽  
Angela M Yu ◽  
Julius B Lucks ◽  
Neda Bagheri

Abstract Motivation RNA molecules can undergo complex structural dynamics, especially during transcription, which influence their biological functions. Recently developed high-throughput chemical probing experiments that study RNA cotranscriptional folding generate nucleotide-resolution ‘reactivities’ for each length of a growing nascent RNA that reflect structural dynamics. However, the manual annotation and qualitative interpretation of reactivity across these large datasets can be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and systematic approach to automatically detect RNA folding events from these datasets to reduce human bias/error, standardize event discovery and generate hypotheses about RNA folding trajectories for further analysis and experimental validation. Results Detection of Unknown Events with Tunable Thresholds (DUETT) identifies RNA structural transitions in cotranscriptional RNA chemical probing datasets. DUETT employs a feedback control-inspired method and a linear regression approach and relies on interpretable and independently tunable parameter thresholds to match qualitative user expectations with quantitatively identified folding events. We validate the approach by identifying known RNA structural transitions within the cotranscriptional folding pathways of the Escherichia coli signal recognition particle RNA and the Bacillus cereus crcB fluoride riboswitch. We identify previously overlooked features of these datasets such as heightened reactivity patterns in the signal recognition particle RNA about 12 nt lengths before base-pair rearrangement. We then apply a sensitivity analysis to identify tradeoffs when choosing parameter thresholds. Finally, we show that DUETT is tunable across a wide range of contexts, enabling flexible application to study broad classes of RNA folding mechanisms. Availability and implementation https://github.com/BagheriLab/DUETT. Supplementary information Supplementary data are available at Bioinformatics online.



2020 ◽  
Author(s):  
Jeffrey E. Ehrhardt ◽  
Kevin M. Weeks

AbstractMethods for capturing the folding dynamics of functionally important RNAs, especially large RNAs, have relied primarily on global measurements of structure or on per-nucleotide chemical probing. These approaches infer, but do not directly measure, through-space tertiary interactions. Here we introduce trimethyloxonium (TMO) as a chemical probe for RNA. TMO enables time-resolved, single-molecule, through-space structure probing of RNA folding using a correlated chemical probing framework. TMO methylates RNA about 90 times faster than the widely used dimethyl sulfate probe, allowing structure interrogation on the second time scale. We used TMO to monitor folding of the RNase P RNA – a functional RNA with extensive long-range and noncanonical interactions – by direct measurement of through-space tertiary interactions in a time-resolved way. Time-dependent correlation changes directly revealed the central role of a long-range tertiary loop-loop interaction that guides native RNA folding. Single-molecule, time-resolved RNA structure probing with TMO is poised to reveal a wide range of dynamic RNA folding processes and principles of RNA folding.



2018 ◽  
Author(s):  
Angela M Yu ◽  
Paul M. Gasper ◽  
Eric J. Strobel ◽  
Kyle E. Watters ◽  
Alan A. Chen ◽  
...  

SummaryThe series of RNA folding events that occur during transcription, or a cotranscriptional folding pathway, can critically influence the functional roles of RNA in the cell. Here we present a method, Reconstructing RNA Dynamics from Data (R2D2), to uncover details of cotranscriptional folding pathways by predicting RNA secondary and tertiary structures from cotranscriptional SHAPE-Seq data. We applied R2D2 to the folding of the Escherichia coli Signal Recognition Particle (SRP) RNA sequence and show that this sequence undergoes folding through non-native intermediate structures that require significant structural rearrangement before reaching the functional native structure. Secondary structure folding pathway predictions and all-atom molecular dynamics simulations of folding intermediates suggest that this rearrangement can proceed through a toehold mediated strand displacement mechanism, which can be disrupted and rescued with point mutations. These results demonstrate that even RNAs with simple functional folds can undergo complex folding processes during synthesis, and that small variations in their sequence can drastically affect their cotranscriptional folding pathways.Highlights- Computational methods predict RNA structures from cotranscriptional SHAPE-Seq data- The E. coli SRP RNA folds into non-native structural intermediates cotranscriptionally- These structures rearrange dynamically to form an extended functional fold- Point mutations can disrupt and rescue cotranscriptional RNA folding pathways



2021 ◽  
pp. 166975
Author(s):  
Leonard Schärfen ◽  
Karla M. Neugebauer


FEBS Letters ◽  
1988 ◽  
Vol 234 (2) ◽  
pp. 295-299 ◽  
Author(s):  
M. Vojtíšková ◽  
S. Mirkin ◽  
V. Lyamichev ◽  
O. Voloshin ◽  
M. Frank-Kamenetskii ◽  
...  


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.



2022 ◽  
Vol 119 (3) ◽  
pp. e2025575119
Author(s):  
Paolo Rissone ◽  
Cristiano V. Bizarro ◽  
Felix Ritort

Accurate knowledge of RNA hybridization is essential for understanding RNA structure and function. Here we mechanically unzip and rezip a 2-kbp RNA hairpin and derive the 10 nearest-neighbor base pair (NNBP) RNA free energies in sodium and magnesium with 0.1 kcal/mol precision using optical tweezers. Notably, force–distance curves (FDCs) exhibit strong irreversible effects with hysteresis and several intermediates, precluding the extraction of the NNBP energies with currently available methods. The combination of a suitable RNA synthesis with a tailored pulling protocol allowed us to obtain the fully reversible FDCs necessary to derive the NNBP energies. We demonstrate the equivalence of sodium and magnesium free-energy salt corrections at the level of individual NNBP. To characterize the irreversibility of the unzipping–rezipping process, we introduce a barrier energy landscape of the stem–loop structures forming along the complementary strands, which compete against the formation of the native hairpin. This landscape correlates with the hysteresis observed along the FDCs. RNA sequence analysis shows that base stacking and base pairing stabilize the stem–loops that kinetically trap the long-lived intermediates observed in the FDC. Stem–loops formation appears as a general mechanism to explain a wide range of behaviors observed in RNA folding.



eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
André Plagens ◽  
Michael Daume ◽  
Julia Wiegel ◽  
Lennart Randau

Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules.



2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.



Sign in / Sign up

Export Citation Format

Share Document