scholarly journals Species Tree Inference under the Multispecies Coalescent on Data with Paralogs is Accurate

2018 ◽  
Author(s):  
Zhi Yan ◽  
Peng Du ◽  
Matthew W. Hahn ◽  
Luay Nakhleh

AbstractThe multispecies coalescent (MSC) has emerged as a powerful and desirable framework for species tree inference in phylogenomic studies. Under this framework, the data for each locus is assumed to consist of orthologous, single-copy genes, and heterogeneity across loci is assumed to be due to incomplete lineage sorting (ILS). These assumptions have led biologists that use ILS-aware inference methods, whether based directly on the MSC or proven to be statistically consistent under it (collectively referred to here as MSC-based methods), to exclude all loci that are present in more than a single copy in any of the studied genomes. Furthermore, such analyses entail orthology assignment to avoid the potential of hidden paralogy in the data. The question we seek to answer in this study is: What happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two biological data sets, we show that running such methods on data with paralogs provide very accurate results, either by treating all gene copies within a family as alleles from multiple individuals or by randomly selecting one copy per species. Our results have significant implications for the use of MSC-based phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci, thus greatly increasing the amount of data that can be used. [Multispecies coalescent; incomplete lineage sorting; gene duplication and loss; orthology; paralogy.]

2020 ◽  
Author(s):  
John A. Rhodes ◽  
Hector Baños ◽  
Jonathan D. Mitchell ◽  
Elizabeth S. Allman

AbstractMSCquartets is an R package for species tree hypothesis testing, inference of species trees, and inference of species networks under the Multispecies Coalescent model of incomplete lineage sorting. Input for these analyses are collections of metric or topological locus trees which are then summarized by the quartets displayed on them. Results of hypothesis tests at user-supplied levels are displayed in a simplex plot by color-coded points. The package includes the QDC and WQDC algorithms for topological and metric species tree inference, and the NANUQ algorithm for level-1 topological species network inference, all of which give statistically consistent estimators under the model.


2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


Author(s):  
John A Rhodes ◽  
Hector Baños ◽  
Jonathan D Mitchell ◽  
Elizabeth S Allman

Abstract Summary MSCquartets is an R package for species tree hypothesis testing, inference of species trees, and inference of species networks under the Multispecies Coalescent model of incomplete lineage sorting and its network analog. Input for these analyses are collections of metric or topological locus trees which are then summarized by the quartets displayed on them. Results of hypothesis tests at user-supplied levels are displayed in a simplex plot by color-coded points. The package implements the QDC and WQDC algorithms for topological and metric species tree inference, and the NANUQ algorithm for level-1 topological species network inference, all of which give statistically consistent estimators under the model. Availability MSCquartets is available through the Comprehensive R Archive Network: https://CRAN.R-project.org/package=MSCquartets. Supplementary information Supplementary materials, including example data and analyses, are incorporated into the package.


2013 ◽  
Vol 112 (7) ◽  
pp. 1263-1278 ◽  
Author(s):  
Dayana E. Salas-Leiva ◽  
Alan W. Meerow ◽  
Michael Calonje ◽  
M. Patrick Griffith ◽  
Javier Francisco-Ortega ◽  
...  

2021 ◽  
Author(s):  
Megan L Smith ◽  
Dan Vanderpool ◽  
Matthew W. Hahn

Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most phylogenomic studies identify putative single-copy orthologs by using clustering approaches and retaining families with a single sequence from each species. However, this approach can severely limit the amount of data available by excluding larger families. Recent methodological advances have suggested several ways to include data from larger families. For instance, tree-based decomposition methods facilitate the extraction of orthologs from large families. Additionally, several popular methods for species tree inference appear to be robust to the inclusion of paralogs, and hence could use all of the data from larger families. Here, we explore the effects of using all families for phylogenetic inference using genomes from 26 primate species. We compare single-copy families, orthologs extracted using tree-based decomposition approaches, and all families with all data (i.e., including orthologs and paralogs). We explore several species tree inference methods, finding that across all nodes of the tree except one, identical trees are returned across nearly all datasets and methods. As in previous studies, the relationships among Platyrrhini remain contentious; however, the tree inference methods matter more than the dataset used. We also assess the effects of each dataset on branch length estimates, measures of phylogenetic uncertainty and concordance, and in detecting introgression. Our results demonstrate that using data from larger gene families drastically increases the number of genes available for phylogenetic inference and leads to consistent estimates of branch lengths, nodal certainty and concordance, and inferences of introgression.


2017 ◽  
Author(s):  
Graham Jones

AbstractThis paper focuses on the problem of estimating a species tree from multilocus data in the presence of incomplete lineage sorting and migration. We develop a mathematical model similar to IMa2 (Hey 2010) for the relevant evolutionary processes which allows both the the population size parameters and the migration rates between pairs of species tree branches to be integrated out. We then describe a BEAST2 package DENIM which based on this model, and which uses an approximation to sample from the posterior. The approximation is based on the assumption that migrations are rare, and it only samples from certain regions of the posterior which seem likely given this assumption. The method breaks down if there is a lot of migration. Using simulations, Leaché et al 2014 showed migration causes problems for species tree inference using the multispecies coalescent when migration is present but ignored. We re-analyze this simulated data to explore DENIM’s performance, and demonstrate substantial improvements over *BEAST. We also re-analyze an empirical data set. [isolation-with-migration; incomplete lineage sorting; multispecies coalescent; species tree; phylogenetic analysis; Bayesian; Markov chain Monte Carlo]


2019 ◽  
Author(s):  
Yaxuan Wang ◽  
Huw A. Ogilvie ◽  
Luay Nakhleh

AbstractSpecies tree inference from multi-locus data has emerged as a powerful paradigm in the post-genomic era, both in terms of the accuracy of the species tree it produces as well as in terms of elucidating the processes that shaped the evolutionary history. Bayesian methods for species tree inference are desirable in this area as they have been shown to yield accurate estimates, but also to naturally provide measures of confidence in those estimates. However, the heavy computational requirements of Bayesian inference have limited the applicability of such methods to very small data sets.In this paper, we show that the computational efficiency of Bayesian inference under the multispecies coalescent can be improved in practice by restricting the space of the gene trees explored during the random walk, without sacrificing accuracy as measured by various metrics. The idea is to first infer constraints on the trees of the individual loci in the form of unresolved gene trees, and then to restrict the sampler to consider only resolutions of the constrained trees. We demonstrate the improvements gained by such an approach on both simulated and biological data.


2020 ◽  
Vol 37 (6) ◽  
pp. 1809-1818
Author(s):  
Yaxuan Wang ◽  
Huw A Ogilvie ◽  
Luay Nakhleh

Abstract Species tree inference from multilocus data has emerged as a powerful paradigm in the postgenomic era, both in terms of the accuracy of the species tree it produces as well as in terms of elucidating the processes that shaped the evolutionary history. Bayesian methods for species tree inference are desirable in this area as they have been shown not only to yield accurate estimates, but also to naturally provide measures of confidence in those estimates. However, the heavy computational requirements of Bayesian inference have limited the applicability of such methods to very small data sets. In this article, we show that the computational efficiency of Bayesian inference under the multispecies coalescent can be improved in practice by restricting the space of the gene trees explored during the random walk, without sacrificing accuracy as measured by various metrics. The idea is to first infer constraints on the trees of the individual loci in the form of unresolved gene trees, and then to restrict the sampler to consider only resolutions of the constrained trees. We demonstrate the improvements gained by such an approach on both simulated and biological data.


Author(s):  
Elizabeth S. Allman ◽  
Jonathan D. Mitchell ◽  
John A. Rhodes

AbstractA simple graphical device, the simplex plot of quartet concordance factors, is introduced to aid in the exploration of a collection of gene trees on a common set of taxa. A single plot summarizes all gene tree discord, and allows for visual comparison to the expected discord from the multispecies coalescent model (MSC) of incomplete lineage sorting on a species tree. A formal statistical procedure is described that can quantify the deviation from expectation for each subset of four taxa, suggesting when the data is not in accord with the MSC, and thus either gene tree inference error is substantial or a more complex model such as that on a network may be required. If the collection of gene trees appears to be in accord with the MSC, the plots may reveal when substantial incomplete lineage sorting is present and coalescent based species tree inference is preferred over concatenation approaches. Applications to both simulated and empirical multilocus data sets illustrate the insights provided.


Sign in / Sign up

Export Citation Format

Share Document