scholarly journals A 3-hydroxy-3-methylglutaryl-CoA synthase-based probe for the discovery of the acyltransferase-less type I polyketide synthases

2019 ◽  
Author(s):  
Haoyu Liang ◽  
Lin Jiang ◽  
Qiyun Jiang ◽  
Jie Shi ◽  
Jingxi Xiang ◽  
...  

ABSTRACTAcyltransferase (AT)-less type I polyketide synthases (PKSs) produce complex natural products due to the presence of many unique tailoring enzymes. The 3-hydroxy-3-methylglutaryl coenzyme A synthases (HCSs) are responsible for β-alkylation of the growing polyketide intermediates in AT-less type I PKSs. In this study, we discovered a large group of HCSs, closely associated with the characterized and orphan AT-less type I PKSs through in silico genome mining, sequence and genome neighborhood network analysis. Using HCS-based probes, the survey of 1207 inhouse strains and 18 soil samples from different geological locations revealed the vast diversity of HCS-containing AT-less type I PKSs. The presence of HCSs in many AT-less type I PKSs suggests their co-evolutionary relationship. Our study should inspire future efforts to discover new polyketide natural products from AT-less type I PKSs.

2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Yan Zhang ◽  
Feng Liu ◽  
Na Xu ◽  
Yin-Qi Wu ◽  
Yu-Cong Zheng ◽  
...  

ABSTRACT Two Baeyer-Villiger monooxygenases (BVMOs), designated Bo BVMO and Am BVMO, were discovered from Bradyrhizobium oligotrophicum and Aeromicrobium marinum , respectively. Both monooxygenases displayed novel features for catalyzing the asymmetric sulfoxidation of bulky and pharmaceutically relevant thioethers. Evolutionary relationship and sequence analysis revealed that the two BVMOs belong to the family of typical type I BVMOs and the subtype ethionamide monooxygenase. Both BVMOs are active toward medium- and long-chain aliphatic ketones as well as various thioether substrates but are ineffective toward cyclohexanone, aromatic ketones, and other typical BVMO substrates. Bo BVMO and Am BVMO showed the highest activities (0.117 and 0.025 U/mg protein, respectively) toward thioanisole among the tested substrates. Furthermore, these BVMOs exhibited distinct activity and excellent stereoselectivity toward bulky and prochiral prazole thioethers, which is a unique feature of this family of BVMOs. No native enzyme has been reported for the asymmetric sulfoxidation of bulky prazole thioethers into chiral sulfoxides. The identification of Bo BVMO and Am BVMO provides an important scaffold for discovering enzymes capable of asymmetrically oxidizing bulky thioether substrates by genome mining. IMPORTANCE Baeyer-Villiger monooxygenases (BVMOs) are valuable enzyme catalysts that are an alternative to the chemical Baeyer-Villiger oxidation reaction. Although BVMOs display broad substrate ranges, no native enzymes were reported to have activity toward the asymmetric oxidation of bulky prazole-like thioether substrates. Herein, we report the discovery of two type I BVMOs from Bradyrhizobium oligotrophicum ( Bo BVMO) and Aeromicrobium marinum ( Am BVMO) which are able to catalyze the asymmetric sulfoxidation of bulky prazole thioethers (proton pump inhibitors [PPIs], a group of drugs whose main action is a pronounced and long-lasting reduction of gastric acid production). Efficient catalysis of omeprazole oxidation by Bo BVMO was developed, indicating that this enzyme is a promising biocatalyst for the synthesis of bulky and pharmaceutically relevant chiral sulfoxide drugs. These results demonstrate that the newly identified enzymes are suitable templates for the discovery of more and better thioether-converting BVMOs.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


2015 ◽  
Vol 15 (3) ◽  
pp. 253-269 ◽  
Author(s):  
L. Scotti ◽  
H. Ishiki ◽  
F.J.B. Mendonca ◽  
M.S. Silva ◽  
M.T. Scotti

2009 ◽  
Vol 5 (4) ◽  
pp. e1000351 ◽  
Author(s):  
Gitanjali Yadav ◽  
Rajesh S. Gokhale ◽  
Debasisa Mohanty

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Nadia A. Rivero-Segura ◽  
Juan C. Gomez-Verjan

The COVID-19 pandemic has already taken the lives of more than 2 million people worldwide, causing several political and socio-economic disturbances in our daily life. At the time of publication, there are non-effective pharmacological treatments, and vaccine distribution represents an important challenge for all countries. In this sense, research for novel molecules becomes essential to develop treatments against the SARS-CoV-2 virus. In this context, Mexican natural products have proven to be quite useful for drug development; therefore, in the present study, we perform an in silico screening of 100 compounds isolated from the most commonly used Mexican plants, against the SARS-CoV-2 virus. As results, we identify ten compounds that meet leadlikeness criteria (emodin anthrone, kaempferol, quercetin, aesculin, cichoriin, luteolin, matricin, riolozatrione, monocaffeoyl tartaric acid, aucubin). According to the docking analysis, only three compounds target the key proteins of SARS-CoV-2 (quercetin, riolozatrione and cichoriin), but only one appears to be safe (cichoriin). ADME (absorption, distribution, metabolism and excretion) properties and the physiologically based pharmacokinetic (PBPK) model show that cichoriin reaches higher lung levels (100 mg/Kg, IV); therefore, it may be considered in developing therapeutic tools.


Sign in / Sign up

Export Citation Format

Share Document