scholarly journals Modelling the role of dual specificity phosphatases in Herceptin resistant breast cancer cell lines

2019 ◽  
Author(s):  
Petronela Buiga ◽  
Ari Elson ◽  
Lydia Tabernero ◽  
Jean-Marc Schwartz

AbstractBackgroundBreast cancer remains the most lethal type of cancer for women. A significant proportion of breast cancer cases are characterised by overexpression of the human epidermal growth factor receptor 2 protein (HER2). These cancers are commonly treated by Herceptin (Trastuzumab), but resistance to drug treatment frequently develops in tumour cells. Dual-specificity phosphatases (DUSPs) are thought to play a role in the mechanism of resistance, since some of them were reported to be overexpressed in tumours resistant to Herceptin.ResultsWe used a systems biology approach to investigate how DUSP overexpression could favour cell proliferation and to predict how this mechanism could be reversed by targeted inhibition of selected DUSPs. We measured the expression of 20 DUSP genes in two breast cancer cell lines following long-term (6 months) exposure to Herceptin, after confirming that these cells had become resistant to the drug. We constructed several Boolean models including specific substrates of each DUSP, and showed that our models correctly account for resistance when overexpressed DUSPs were kept activated. We then simulated inhibition of both individual and combinations of DUSPs, and determined conditions under which the resistance could be reversed.ConclusionsThese results show how a combination of experimental analysis and modelling help to understand cell survival mechanisms in breast cancer tumours, and crucially enable us to generate testable predictions potentially leading to new treatments of resistant tumours.

2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


Sign in / Sign up

Export Citation Format

Share Document