migration potential
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 68)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Tong Qiu ◽  
Shubhi Sharma ◽  
Christopher W. Woodall ◽  
James S. Clark

Anticipating the next generation of forests requires understanding of recruitment responses to habitat change. Tree distribution and abundance depend not only on climate, but also on habitat variables, such as soils and drainage, and on competition beneath a shaded canopy. Recent analyses show that North American tree species are migrating in response to climate change, which is exposing each population to novel climate-habitat interactions (CHI). Because CHI have not been estimated for either adult trees or regeneration (recruits per year per adult basal area), we cannot evaluate migration potential into the future. Using the Masting Inference and Forecasting (MASTIF) network of tree fecundity and new continent-wide observations of tree recruitment, we quantify impacts for redistribution across life stages from adults to fecundity to recruitment. We jointly modeled response of adult abundance and recruitment rate to climate/habitat conditions, combined with fecundity sensitivity, to evaluate if shifting CHI explain community reorganization. To compare climate effects with tree fecundity, which is estimated from trees and thus is "conditional" on tree presence, we demonstrate how to quantify this conditional status for regeneration. We found that fecundity was regulated by temperature to a greater degree than other stages, yet exhibited limited responses to moisture deficit. Recruitment rate expressed strong sensitivities to CHI, more like adults than fecundity, but still with substantial differences. Communities reorganized from adults to fecundity, but there was a re-coalescence of groups as seedling recruitment partially reverted to community structure similar to that of adults. Results provide the first estimates of continent-wide community sensitivity and their implications for reorganization across three life-history stages under climate change.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Xiaoxia Cheng ◽  
Shao'an Xue ◽  
Zijian Wang ◽  
Fengqin He ◽  
Bo Wang

In this study we investigate the migration inhibition of Gypenosides (Gyp) and its combined effects with 5-fluorouracil (5-FU) on human colon cancer SW-620 cells, hoping to explore more potential clinical use of Gyp. Our data implied Gyp could significantly inhibit the migration potential of SW-620 cells including down-regulating matrix Metalloproteinases expression and decreasing cells adhesion ability. What’s more, evidence showed cells treated with Gyp exerted serious microfilament network collapse as well as a significant decline in the number of microvilli. A significant migration inhibitory effect was seen in Gyp groups along with the decline of cell adhesion. Further, the combination studies suggested Gyp could synergistically enhance the antitumor effect of 5-FU in SW-620 cells through the apoptosis way. The present study indicated Gyp could prevent cell migration and further enhance the cell killing effect of 5-FU on human colon cancer SW-620 cells.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5967
Author(s):  
Nicolas Jacquelot ◽  
Maryam Ghaedi ◽  
Kathrin Warner ◽  
Douglas C. Chung ◽  
Sarah Q. Crome ◽  
...  

Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular “brakes” are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.


Author(s):  
Jun Pan ◽  
Fang Ye ◽  
Chengxuan Yu ◽  
Qinsheng Zhu ◽  
Jiaqi Li ◽  
...  

The tumor microenvironment heterogeneity of papillary thyroid cancer (PTC) is poorly characterized. The relationship between PTC and Hashimoto thyroiditis (HT) is also in doubt. Here, we used single-cell RNA sequencing to map the transcriptome landscape of PTC from eight PTC patients, of which three were concurrent with HT. Predicted copy number variation in epithelial cells and mesenchymal cells revealed the distinct molecular signatures of carcinoma cells. Carcinoma cells demonstrated intertumoral heterogeneity based on BRAF V600E mutation or lymph node metastasis, and some altered genes were identified to be correlated with disease-free survival in The Cancer Genome Atlas datasets. In addition, transcription factor regulons of follicular epithelial cells unveil the different transcription activation state in PTC patients with or without concurrent HT. The immune cells in tumors exhibited distinct transcriptional states, and the presence of tumor-infiltrating B lymphocytes was predominantly linked to concurrent HT origin. Trajectory analysis of B cells and plasma cells suggested their migration potential from HT adjacent tissues to tumor tissues. Furthermore, we revealed diverse ligand–receptor pairs between non-immune cells, infiltrating myeloid cells, and lymphocytes. Our results provided a single-cell landscape of human PTC. These data would deepen the understanding of PTC, as well as the immunological link between PTC and HT.


2021 ◽  
Vol 169 (1-2) ◽  
Author(s):  
Marc Helbling ◽  
Daniel Auer ◽  
Daniel Meierrieks ◽  
Malcolm Mistry ◽  
Max Schaub

AbstractWhile a growing literature studies the effects of climate change on international migration, still only relatively little is known about the individual mechanisms linking migration decisions to climate change. We argue that climate change literacy (i.e., knowledge about climate change) is a major determinant of why some individuals consider migrating to other countries in response to climate change effects. In particular, climate change literacy helps individuals translate their perceptions of temperature changes into an understanding of these changes’ irreversible long-term consequences. We test this hypothesis using highly accurate geo-coded data for 37,000 individuals across 30 African countries. We show that climate change indeed leads to stronger migration intentions among climate literates only. Furthermore, we show that climate change only increases migration intentions among climate literates when it is approximated by long-run increases in local temperatures, but not when operationalized as changing heat wave or precipitation patterns. Further analyses show that climate literates are more likely to live in urban areas, have a higher news consumption, are highly educated, and have demanding occupations. Consequently, climate change may further deprive affected countries of valuable talent.


2021 ◽  
Vol 55 (6) ◽  
pp. 910-918
Author(s):  
N. A. Mitkin ◽  
A. S. Ustiugova ◽  
A. N. Uvarova ◽  
K. A. Rumyantsev ◽  
K. V. Korneev ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 896
Author(s):  
Martin Wendt ◽  
Nele Senftleben ◽  
Patrick Gros ◽  
Thomas Schmitt

A mark-recapture study of the nominotypical Erebia pronoe in the Alps was conducted to survey its ecological demands and characteristics. Population structure analysis revealed a combination of protandry (one-week earlier eclosion of males) and serial eclosion. Significant differences between both sexes were found in population density (males: 580/ha ± 37 SE; females: 241/ha ± 66 SE), sex-ratio (2.4) and behaviour (57.7 vs. 11.9% flying). Both sexes used a wide range of nectar plants (Asteraceae, 77.3%; Dipsacaceae, 12.3%; Gentianaceae, 9.7%). The use of nectar plants shows a non-specific spectrum, which, however, completely avoids overlap with the locally co-occurring species Erebia nivalis. Movement patterns show the establishment of homeranges, which significantly limits the migration potential. Due to its broad ecological niche, E. pronoe will probably be able to react plastically to the consequences of climate change. The formation of high population densities, the unconcerned endangerment status, the unspecific resource spectrum and the sedentary character of the species make E. pronoe a potential indicator of the quality and general resource occurrence of alpine rupicolous grasslands.


2021 ◽  
Vol 11 (17) ◽  
pp. 8101
Author(s):  
Alina Stanomir ◽  
Carmen Mihaela Mihu ◽  
Simona Rednic ◽  
Cristina Pamfil ◽  
Alexandra Roman ◽  
...  

Introduction. As oral mesenchymal stromal cells (MSCs) have not, to date, been isolated from systemic sclerosis (SSc) patients, the aim of this in vitro experiment was to characterize gingival MSCs (SScgMSCs) and granulation tissue MSCs (SScgtMSCs) from SSc and to evaluate their functionality in comparison to healthy MSCs (hMSCs), in normal or hyaluronic acid (HA) culture media. Materials and Methods. Isolated cells were described by immunophenotyping of surface antigen make-up and by trilineage mesenchymal differentiation capacity. Colony-Forming Unit-Fibroblast (CFU-F) test and migration potential evaluated MSC functionality. Results. All types of MSCs displayed positivity for the following surface markers: CD29, CD73, CD90, CD105, CD44, and CD79a. These cells did not express CD34, CD45, HL-DR, and CD14. Isolated MSCs differentiated into osteoblasts, adipocytes, and chondroblasts. The frequency of CFU-F for SScgtMSCs was significantly lower than that of hMSCs (p = 0.05) and SScgMSCs (p = 0.004) in normal medium, and also markedly lower than that of SScgMSCs (p = 0.09) in HA medium. Following HA exposure, both SScgMSCs and SScgtMSCs migrated significantly less (p = 0.033 and p = 0.005, respectively) than hMSCs. Conclusions. A reduced functionality of MSCs derived from SSc as compared to hMSCs was observed. HA in culture medium appeared to significantly stimulate the migration potential of hMSCs.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 998
Author(s):  
Konstantin A. Toniyan ◽  
Victoria V. Povorova ◽  
Elena Yu. Gorbacheva ◽  
Valery V. Boyarintsev ◽  
Irina V. Ogneva

(1) Background: Endometriosis is a common pathology of the female reproductive system, often accompanied by pain and decreased fertility. However, its pathogenesis has not been sufficiently studied regarding the role of the cytoskeleton. In this study, we describe two clinical cases involving rare localization of extragenital endometriosis (umbilicus) and compare them with genital endometriosis of different localization (ovaries and uterus), as well as eutopic endometrium obtained with separate diagnostic curettage without confirmed pathology. (2) Methods: The relative content of actin and tubulin cytoskeleton proteins was determined by Western blotting, and the expression of genes encoding these proteins was determined by RT-PCR in the obtained intraoperative biopsies. The content of 5hmC was estimated by dot blot experiments, and the methylase/demethylase and acetylase/deacetylase contents were determined. (3) Results: The obtained results indicate that the content of the actin-binding protein alpha-actinin1 significantly increased (p < 0.05) in the groups with endometriosis, and this increase was most pronounced in patients with umbilical endometriosis. In addition, both the mRNA content of the ACTN1 gene and 5hmC content increased. It can be assumed that the increase in 5hmC is associated with a decrease in the TET3 demethylase content. Moreover, in the groups with extragenital endometriosis, alpha- and beta-tubulin content was decreased (p < 0.05) compared to the control levels. (4) Conclusions: In analyzing the results, further distance of ectopic endometrial foci from the eutopic localization may be associated with an increase in the content of alpha-actinin1, probably due to an increase in the expression of its gene and an increase in migration potential. In this case, a favorable prognosis can be explained by a decrease in tubulin content and, consequently, a decrease in the rate of cell division.


Sign in / Sign up

Export Citation Format

Share Document