scholarly journals Molecular Dynamics Simulations of the Interaction of Mouse andTorpedoAcetylcholinesterase with Covalent Inhibitors Explain Their Differential Reactivity: Implications for Drug Design

2019 ◽  
Author(s):  
Nellore Bhanu Chandar ◽  
Irena Efremenko ◽  
Israel Silman ◽  
Jan M.L. Martin ◽  
Joel L. Sussman

AbstractAlthough the three-dimensional structures of mouse andTorpedo californicaacetylcholinesterase are very similar, their responses to the covalent sulfonylating agents benzenesulfonyl fluoride and phenylmethylsulfonyl fluoride are qualitatively different. Both agents inhibit the mouse enzyme effectively by covalent modification of its active-site serine. In contrast, whereas theTorpedoenzyme is effectively inhibited by benzenesulfonyl fluoride, it is completely resistant to phenylmethylsulfonyl fluoride. A bottleneck midway down the active-site gorge in both enzymes restricts access of ligands to the active site at the bottom of the gorge. Molecular dynamics simulations revealed that the mouse enzyme is substantially more flexible than theTorpedoenzyme, suggesting that enhanced ‘breathing motions’ of the mouse enzyme relative to theTorpedoenzyme might explain why phenylmethylsulfonyl fluoride can reach the active site in mouse acetylcholinesterase, but not in theTorpedoenzyme. Accordingly, we performed docking of the two sulfonylating agents to the two enzymes, followed by molecular dynamics simulations. Whereas benzenesulfonyl fluoride closely approached the active-site serine in both mouse andTorpedoacetylcholinesterase in such simulations, phenylmethylsulfonyl fluoride was able to approach the active-site serine of mouse acetylcholinesterase - but remained trapped above the bottleneck in the case of theTorpedoenzyme. Our studies demonstrate that reliance on docking tools in drug design can produce misleading information. Docking studies should, therefore, also be complemented by molecular dynamics simulations in selection of lead compounds.Author summaryEnzymes are protein molecules that catalyze chemical reactions in living organisms, and are essential for their physiological functions. Proteins have well defined three-dimensional structures, but display flexibility; it is believed that this flexibility, known as their dynamics, plays a role in their function. Here we studied the neuronal enzyme acetylcholinesterase, which breaks down the neurotransmitter, acetylcholine. The active site of this enzyme is deeply buried, and accessed by a narrow gorge. A particular inhibitor, phenylmethylsulfonyl fluoride, is known to inhibit mouse acetylcholinesterase, but not that of the electric fish,Torpedo, even though their structures are very similar. A theoretical technique called molecular dynamics (MD) shows that the mouse enzyme is more flexible than theTorpedo enzyme. Furthermore, when the movement of the inhibitor down the gorge towards the active site is simulated using MD, the phenylmethylsulfonyl fluoride can reach the active site in the mouse enzyme, but not in theTorpedoenzyme, in which it remains trapped midway down the gorge. Our study emphasizes the importance of taking into account not only structure, but also dynamics, in designing drugs targeted towards proteins.

2018 ◽  
Vol 115 (52) ◽  
pp. E12192-E12200 ◽  
Author(s):  
Haoran Yu ◽  
Paul A. Dalby

The directed evolution of enzymes for improved activity or substrate specificity commonly leads to a trade-off in stability. We have identified an activity–stability trade-off and a loss in unfolding cooperativity for a variant (3M) of Escherichia coli transketolase (TK) engineered to accept aromatic substrates. Molecular dynamics simulations of 3M revealed increased flexibility in several interconnected active-site regions that also form part of the dimer interface. Mutating the newly flexible active-site residues to regain stability risked losing the new activity. We hypothesized that stabilizing mutations could be targeted to residues outside of the active site, whose dynamics were correlated with the newly flexible active-site residues. We previously stabilized WT TK by targeting mutations to highly flexible regions. These regions were much less flexible in 3M and would not have been selected a priori as targets using the same strategy based on flexibility alone. However, their dynamics were highly correlated with the newly flexible active-site regions of 3M. Introducing the previous mutations into 3M reestablished the WT level of stability and unfolding cooperativity, giving a 10.8-fold improved half-life at 55 °C, and increased midpoint and aggregation onset temperatures by 3 °C and 4.3 °C, respectively. Even the activity toward aromatic aldehydes increased up to threefold. Molecular dynamics simulations confirmed that the mutations rigidified the active-site via the correlated network. This work provides insights into the impact of rigidifying mutations within highly correlated dynamic networks that could also be useful for developing improved computational protein engineering strategies.


2017 ◽  
Vol 1865 (11) ◽  
pp. 1406-1415 ◽  
Author(s):  
Bhaskar Sharma ◽  
Sahayog N. Jamdar ◽  
Biplab Ghosh ◽  
Pooja Yadav ◽  
Ashwani Kumar ◽  
...  

Author(s):  
Rakesh K. R. Pandit ◽  
Dinesh Gupta ◽  
Tapan K. Mukherjee

Objective: The purpose of this study was to identify a potential peptidomimetic S. typhi Beta-lactamase TEM 1 inhibitor to tackle the antibiotic resistance among S. typhi.Methods: The potential peptidomimetic inhibitor was identified by in silico docking of the small peptide WFRKQLKW with S. typhi Beta-lactamase TEM 1. The 3D coordinate geometry of the residues of small peptide interacting with the active site of the receptor was generated and mimics were identified using PEP: MMs: MIMIC server. All the identified mimics were docked at the active site of the receptor using Autodock 4.2 and the best-docked complex was selected on the basis of binding energy and number of H-bonds. The complex was then subjected to molecular dynamics simulations of 30 ns using AMBER 12 software package. The stereochemical stability of the Beta-lactamase TEM 1-WFRKQLKW complex was estimated with the help of Ramachandran plot using PROCHECK tool.Results: In the present study, a new potential peptidomimetic inhibitor (ZINC05839264) of Beta-lactamase TEM 1 has been identified based on antimicrobial peptide WFRKQLKW by virtual screening of the MMsINC database. The docking and molecular simulation studies revealed that the mimic binds more tightly to the active site of the receptor than the peptide. The Ramachandran plot also shows that the Beta-lactamase TEM 1-mimic complex is stereo chemically more stable than Beta-lactamase TEM 1-WFRKQLKW complex as more number of residues (93.6%) are falling under the core region of the plot in case of the former.Conclusion: The study shows that the peptidomimetic compound can act as a potential inhibitor of S. typhi Beta-lactamase TEM 1 and further it can be developed into more effective therapeutic to tackle the problem of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document