scholarly journals Memory-guided microsaccades

2019 ◽  
Author(s):  
Konstantin-Friedrich Willeke ◽  
Xiaoguang Tian ◽  
Antimo Buonocore ◽  
Joachim Bellet ◽  
Araceli Ramirez-Cardenas ◽  
...  

AbstractMicrosaccades are overwhelmingly described as involuntary eye movements. Here we show in both human subjects and monkeys that individual microsaccades of any direction can easily be triggered: (1) “on demand”, based on an arbitrary instruction, (2) without any special training, (3) without visual guidance by a stimulus, and (4) in a spatially and temporally accurate manner. Subjects voluntarily generated instructed “memory-guided” microsaccades readily, and similarly to how they made normal visually-guided ones. In two monkeys, we also observed midbrain superior colliculus neurons that exhibited movement-related activity bursts exclusively for memory-guided microsaccades, but not for similarly-sized visually-guided movements. Our results demonstrate behavioral and neural evidence for voluntary control over individual microsaccades, supporting recently discovered functional contributions of individual microsaccade generation to visual performance alterations and covert visual selection.

2003 ◽  
Vol 90 (2) ◽  
pp. 1046-1062 ◽  
Author(s):  
Janet O. Helminski ◽  
Mark A. Segraves

Extracellular recordings were made simultaneously in the frontal eye field and superior colliculus in awake, behaving rhesus monkeys. Frontal eye field microstimulation was used to orthodromically activate the superior colliculus both to locate the depth of the strongest frontal eye field input to the superior colliculus and to identify superior colliculus neurons receiving direct frontal eye field input. The activity of orthodromically driven colliculus neurons was characterized during visuomotor tasks. The purpose of this study was to identify the types of superior colliculus neurons that receive excitatory frontal eye field input. We found that microstimulation of the frontal eye field did not activate the superficial layers of the superior colliculus but did activate the deeper layers. This pattern of activation coincided with the prevalence of visual versus saccade-related activity in the superficial and deep layers. A total of 83 orthodromically driven superior colliculus neurons were identified. Of these neurons, 93% ( n = 77) exhibited a burst of activity associated with the onset of the saccade, and 25% ( n = 21) exhibited prelude/build-up activity prior to the onset of a saccade. In addition, it was common to see some activity synchronized with the onset of a visual target (30%, n = 25). In single neurons, these activity profiles could be observed alone or in combination. Superior colliculus neurons that were exclusively visual, however, were not excited by frontal eye field stimulation. We compared the activity of superior colliculus neurons that received frontal eye field input to descriptions of saccade-related neurons made in earlier reports and found that the distribution of neuron types in the orthodromically driven population was similar to the distribution within the overall population. This suggests that the frontal eye field does not selectively influence a specific class of collicular neurons, but, instead has a direct influence on all preparatory, and saccade-related activity within the deep layers of the superior colliculus.


2000 ◽  
Vol 84 (2) ◽  
pp. 876-891 ◽  
Author(s):  
Richard J. Krauzlis ◽  
Michele A. Basso ◽  
Robert H. Wurtz

The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as “fixation cells” because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades—they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command—a principle that may be applicable to buildup neurons elsewhere in the SC.


2004 ◽  
Vol 92 (2) ◽  
pp. 949-958 ◽  
Author(s):  
Richard J. Krauzlis

The superior colliculus (SC) has long been known to be important for the control of saccades, and recent findings indicate that the rostral SC (rSC) plays some role in pursuit as well. The recent finding that the prelude activity of some SC neurons exhibits directional selectivity suggests that the rSC might process visual motion signals relevant for the control of pursuit. We have now tested the activity of buildup neurons in the rSC during the passive viewing of motion stimuli placed within their response field and also during the previewing of visual motion stimuli that were subsequently tracked with pursuit eye movements. We found that rSC buildup neurons typically responded well to motion stimuli, but that they exhibited essentially no selectivity for the direction or speed of visual motion, and that they also responded well to stationary flickering dots. However, during the previewing of visual motion prior to the onset of pursuit, many neurons did exhibit a buildup of activity similar to that exhibited before saccades. These results are inconsistent with the notion that the rSC mediates visual motion signals used to drive pursuit, but instead support the idea that visual motion signals can be used by rSC neurons as part of a mechanism for selecting targets for pursuit and saccades.


1994 ◽  
Vol 11 (2) ◽  
pp. 229-241 ◽  
Author(s):  
Peter H. Schiller ◽  
Kyoungmin Lee

AbstractVisually guided saccadic eye movements to singly presented stationary targets form a bimodal distribution. After superior colliculus lesions, the so called “express saccades” that form the first mode of the distribution are no longer obtained. The aim of this study was to determine what role several other neural systems play in the generation of express and regular saccades, with the latter being those that form the second mode in the bimodal distribution. Lesions were made in the parvocellular and magnocellular portions of the lateral geniculate nucleus to disrupt either the midget system or the parasol system that originates in the retina and areas V4 and MT. The effects of the lesions were examined on the accuracy and latency of saccadic eye movements made to stationary and to moving visual targets. Following magnocellular and MT lesions deficits were observed in smooth pursuit and in the amplitude of saccades made to moving targets. However, none of the lesions produced significant changes in the bimodal distribution of saccadic latencies to stationary targets. The results suggest that express saccades and regular saccades are not selectively mediated by either the midget or the parasol systems or by areas V4 and MT. Neither are the frontal eye fields involved as had previously been shown. We suggest that the superior colliculus plays a central role in producing both express and regular saccades by virtue of highly convergent input from numerous cortical structures.


2016 ◽  
Vol 113 (24) ◽  
pp. 6743-6748 ◽  
Author(s):  
Nathan J. Hall ◽  
Carol L. Colby

A key structure for directing saccadic eye movements is the superior colliculus (SC). The visual pathways that project to the SC have been reported to carry only luminance information and not color information. Short-wavelength–sensitive cones (S-cones) in the retina make little or no contribution to luminance signals, leading to the conclusion that S-cone stimuli should be invisible to SC neurons. The premise that S-cone stimuli are invisible to the SC has been used in numerous clinical and human psychophysical studies. The assumption that the SC cannot use S-cone stimuli to guide behavior has never been tested. We show here that express saccades, which depend on the SC, can be driven by S-cone input. Further, express saccade reaction times and changes in SC activity depend on the amount of S-cone contrast. These results demonstrate that the SC can use S-cone stimuli to guide behavior. We conclude that the use of S-cone stimuli is insufficient to isolate SC function in psychophysical and clinical studies of human subjects.


2021 ◽  
Author(s):  
Rebecca A. Kozak ◽  
Brian D. Corneil

AbstractHumans have a remarkable capacity to rapidly interact with the surrounding environment, often by transforming visual input into motor output on a moment-to-moment basis. But what visual features promote the shortest-latency reach responses? To address this question, we had human subjects perform visually guided reaches to moving targets varied by speed (experiment 1), or speed and contrast (experiment 2) in an emerging target paradigm, which has recently been shown to robustly elicit fast visuomotor responses. Our analysis focused on stimulus-locked responses (SLRs) on upper limb muscles. SLRs represent the first wave of muscle recruitment tied to visual target onset, appearing within <100 ms. Across 32 subjects studied in both experiments, 97% expressed SLRs in the emerging target paradigm. In comparison, 69% of these subjects expressed SLRs in a visually-guided reach paradigm. Within the emerging target paradigm, we found that target speed impacted SLR magnitude, whereas target contrast impacted SLR latency and magnitude. Thus, high contrast, faster-moving targets in the emerging target paradigm robustly recruited the circuitry mediating the most rapid visuomotor transformations for reaching, and such responses were associated with shorter latency RTs. Our results support the hypothesis that a subcortical pathway originating in the superior colliculus may be involved in the earliest wave of muscle recruitment following visual stimulus presentation. In scenarios requiring expedited responses, cortical areas may serve to prime this subcortical pathway, and elaborate subsequent phases of muscle recruitment following the SLR.Significance StatementHumans have a remarkable capacity, when necessary, to rapidly transform vision into action. But how does the brain do this? Here, by studying human subjects reaching to suddenly-appearing targets, we find that the earliest visually-guided actions are produced in response to high-contrast, moving targets. A millisecond-resolution examination of upper limb muscle recruitment shows that motor output can begin within less than 100 ms of target presentation. We surmise that this earliest recruitment arises from a phylogenetically-conserved brainstem circuit originating in the superior colliculus. Rather than being directly involved in the earliest phase of visuomotor actions, cortical areas may prime this brainstem circuit to produce initial muscle recruitment, and then elaborate subsequent phases of recruitment when time is of the essence.


Sign in / Sign up

Export Citation Format

Share Document