scholarly journals Selectivity of Guanine Nucleotide Exchange Factor-mediated Cdc42 activation in primary human endothelial cells

2019 ◽  
Author(s):  
Nathalie R. Reinhard ◽  
Sanne van der Niet ◽  
Anna Chertkova ◽  
Marten Postma ◽  
Peter L. Hordijk ◽  
...  

AbstractThe Rho GTPase family is involved in actin dynamics and regulates the barrier function of the endothelium. One of the main barrier-promoting Rho GTPases is Cdc42, also known as cell division control protein 42 homolog. Currently, regulation of Cdc42-based signaling networks in endothelial cells (ECs) lack molecular details. To examine these, we focused on a subset of 15 Rho guanine nucleotide exchange factors (GEFs), which are expressed in the endothelium. By performing single cell FRET measurements with Rho GTPase biosensors in primary human ECs, we monitored GEF efficiency towards Cdc42 and Rac1. A new, single cell-based analysis was developed and used to enable the quantitative comparison of cellular activities of the full-length GEFs. Our data reveal a specific GEF dependent activation profile, with most efficient Cdc42 activation induced by PLEKHG2, FGD1, PLEKHG1 and pRex1 and the highest selectivity for FGD1. Additionally, we generated truncated GEF constructs that comprise only the catalytic dbl homology (DH) domain or together with the adjacent pleckstrin homology domain (DHPH). The DH domain by itself did not activate Cdc42, whereas the DHPH domain of ITSN1, ITSN2 and PLEKHG1 showed activity towards Cdc42. Together, our study characterized endothelial GEFs that may activate Cdc42, which will be of great value for the field of vascular biology.Abstract FigureGraphical Abstract

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Brock A. Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.


2002 ◽  
Vol 366 (3) ◽  
pp. 721-728 ◽  
Author(s):  
Ulrich RÜMENAPP ◽  
Andrea FREICHEL-BLOMQUIST ◽  
Burkhard WITTINGHOFER ◽  
Karl H. JAKOBS ◽  
Thomas WIELAND

Rho GTPases, which are activated by specific guanine-nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a recently cloned human cDNA, namely KIAA0337, encoding a protein containing 1510 amino acids (p164). It contains a RhoGEF-specific Dbl homology (DH) domain but lacks their typical pleckstrin homology domain. The expression of the mRNA encoding p164 was found to be at least 4-fold higher in the heart than in other tissues. Recombinant p164 interacted with and induced GDP/GTP exchange at RhoA but not at Rac1 or Cdc42. p164-ΔC and p164-ΔN are p164 mutants that are truncated at the C- and N-termini respectively but contain the DH domain. In contrast with the full-length p164, expression of p164-ΔC and p164-ΔN strongly induced actin stress fibre formation and activated serum response factor-mediated and Rho-dependent gene transcription. Interestingly, p164-ΔN2, a mutant containing the C-terminus but having a defective DH domain, bound to p164-ΔC and suppressed the p164-ΔC-induced gene transcription. Overexpression of the full-length p164 inhibited M3 muscarinic receptor-induced gene transcription, whereas co-expression with Gβ1γ2 dimers induced transcriptional activity. It is concluded that p164-RhoGEF is a Rho-specific GEF with novel structural and regulatory properties and predominant expression in the heart. Apparently, its N- and C-termini interact with each other, thereby inhibiting its GEF activity.


2006 ◽  
Vol 400 (3) ◽  
pp. 563-572 ◽  
Author(s):  
Mark A. Baumeister ◽  
Kent L. Rossman ◽  
John Sondek ◽  
Mark A. Lemmon

Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain–phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-δ1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.


2010 ◽  
Vol 78 (4) ◽  
pp. 1417-1425 ◽  
Author(s):  
Richard Bulgin ◽  
Benoit Raymond ◽  
James A. Garnett ◽  
Gad Frankel ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce “the trigger mechanism of cell entry.” Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1859
Author(s):  
Laura Streit ◽  
Laurent Brunaud ◽  
Nicolas Vitale ◽  
Stéphane Ory ◽  
Stéphane Gasman

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.


2002 ◽  
Vol 115 (3) ◽  
pp. 629-640 ◽  
Author(s):  
Michel Souchet ◽  
Elodie Portales-Casamar ◽  
David Mazurais ◽  
Susanne Schmidt ◽  
Isabelle Léger ◽  
...  

The Rho small GTPases are crucial proteins involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. It has been reported that these GTPases are directly associated with cardiovascular disorders. In this context, we have searched for novel modulators of Rho GTPases, and here we describe p63RhoGEF a new Db1-like guanine nucleotide exchange factor (GEF). P63RhoGEF encodes a 63 kDa protein containing a Db1 homology domain in tandem with a pleckstrin homology domain and is most closely related to the second Rho GEF domain of Trio. Northern blot and in situ analysis have shown that p63RhoGEF is mainly expressed in heart and brain. In vitro guanine nucleotide exchange assays have shown that p63RhoGEF specifically acts on RhoA. Accordingly, p63RhoGEF expression induces RhoA-dependent stress fiber formation in fibroblasts and in H9C2 cardiac myoblasts. Moreover, we show that p63RhoGEF activation of RhoA in intact cells is dependent on the presence of the PH domain. Using a specific anti-p63RhoGEF antibody, we have detected the p63RhoGEF protein by immunocytochemistry in human heart and brain tissue sections. Confocal microscopy shows that p63RhoGEF is located in the sarcomeric I-band mainly constituted of cardiac sarcomeric actin. Together, these results show that p63RhoGEF is a RhoA-specific GEF that may play a key role in actin cytoskeleton reorganization in different tissues, especially in heart cellular morphology.


Sign in / Sign up

Export Citation Format

Share Document