scholarly journals Dynamics of visual contextual interactions is altered in Parkinson’s disease

2019 ◽  
Author(s):  
M. Isabel Vanegas ◽  
Annabelle Blangero ◽  
James E Galvin ◽  
Alessandro Di Rocco ◽  
Angelo Quartarone ◽  
...  

AbstractOver the last decades, psychophysical and electrophysiological studies in patients and animal models of Parkinson’s disease (PD), have consistently revealed a number of visual abnormalities. In particular, specific alterations of contrast sensitivity curves, electroretinogram (ERG), and visual evoked potentials (VEP), have been attributed to dopaminergic retinal depletion. However, fundamental mechanisms of cortical visual processing, such as normalization or “gain-control” computations, have not yet been examined in PD patients. Here we measured electrophysiological indices of gain control in both space (surround suppression) and time (sensory adaptation) in PD patients based on steady-state VEP (ssVEP). Compared to controls, patients exhibited a significantly higher initial ssVEP amplitude that quickly decayed over time, and greater relative suppression of ssVEP amplitude as a function of surrounding stimulus contrast. Meanwhile, EEG frequency spectra were broadly elevated in patients relative to controls. Thus, contrary to what might be expected given the reduced contrast sensitivity often reported in PD, visual neural responses are not weaker; rather, they are initially larger but undergo an exaggerated degree of spatial and temporal gain control and are embedded within a greater background noise level. We conclude that compensatory cortical mechanisms may play a role in determining dysfunctional center-surround interactions at the retinal level.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Veronica Ghiglieri ◽  
Vincenza Bagetta ◽  
Valentina Pendolino ◽  
Barbara Picconi ◽  
Paolo Calabresi

In Parkinson’s disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID.


2016 ◽  
Vol 57 (13) ◽  
pp. 5696 ◽  
Author(s):  
Wendy Ming ◽  
Dimitrios J. Palidis ◽  
Miriam Spering ◽  
Martin J. McKeown

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Gajanan S Revankar ◽  
Noriaki Hattori ◽  
Yuta Kajiyama ◽  
Tomohito Nakano ◽  
Masahito Mihara ◽  
...  

Abstract In Parkinson’s disease, a precursor phenomenon to visual hallucinations presents as ‘pareidolias’ which make ambiguous forms appear meaningful. To evoke and detect pareidolias in patients, a noise pareidolia test was recently developed, although its task-dependent mechanisms are yet to be revealed. When subjected to this test, we hypothesized that patients exhibiting pareidolias would show altered top-down influence of visual processing allowing us to demonstrate the influence of pareidolic illusionary behaviour in Parkinson’s disease patients. To that end, we evaluated eye-movement strategies and fixation-related presaccadic activity on scalp EEG when participants performed the test. Twelve healthy controls and 21 Parkinson’s disease patients, evaluated for cognitive, visuo-spatial and executive functions, took a modified computer-based version of the noise pareidolia test in a free-viewing EEG eye-tracking experiment. Eye-tracking metrics (fixation-related durations and counts) documented the eye movement behaviour employed in correct responses (face/noise) and misperceptions (pareidolia/missed) during early and late visual search conditions. Simultaneously, EEG recorded the presaccadic activity in frontal and parietal areas of the brain. Based on the noise pareidolia test scores, we found certain Parkinson’s disease patients exhibited pareidolias whereas others did not. ANOVA on eye-tracking data showed that patients dwelled significantly longer to detect faces and pareidolias which affected both global and local search dynamics depending on their visuo-perceptual status. Presaccadic activity in parietal electrodes for the groups was positive for faces and pareidolias, and negative for noise, though these results depended mainly on saccade size. However, patients sensitive to pareidolias showed a significantly higher presaccadic potential on frontal electrodes independent of saccade sizes, suggesting a stronger frontal activation for pareidolic stimuli. We concluded with the following interpretations (i) the noise pareidolia test specifically characterizes visuo-perceptual inadequacies in patients despite their wide range of cognitive scores, (ii) Parkinson’s disease patients dwell longer to converge attention to pareidolic stimuli due to abnormal saccade generation proportional to their visuo-perceptual deficit during early search, and during late search, due to time-independent alteration of visual attentional network and (iii) patients with pareidolias show increased frontal activation reflecting the allocation of attention to irrelevant targets that express the pareidolic phenomenon. While the disease per se alters the visuo-perceptual and oculomotor dynamics, pareidolias occur in Parkinson’s disease due to an abnormal top-down modulation of visual processing that affects visual attention and guidance to ambiguous stimuli.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Isabel Vanegas ◽  
Annabelle Blangero ◽  
James E. Galvin ◽  
Alessandro Di Rocco ◽  
Angelo Quartarone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document