scholarly journals Growth Mode and Carbon Source Impact the Surfaceome Dynamics ofLactobacillus rhamnosusGG

2019 ◽  
Author(s):  
Kirsi Savijoki ◽  
Tuula A. Nyman ◽  
Veera Kainulainen ◽  
Ilkka Miettinen ◽  
Pia Siljamäki ◽  
...  

AbstractBacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic,Lactobacillus rhamnosusGG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC/A pilus and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN and PepA). The abundance of several known adhesins and novel moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The classical surface adhesins were predicted to be more abundant on planktonic cells growing either on fructose (MBF and SpaA) or glucose (SpaC). An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate classical and nonclassical protein export in GG, which ensures the presence of an integral and coordinated system that contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic.

2019 ◽  
Vol 10 ◽  
Author(s):  
Kirsi Savijoki ◽  
Tuula A. Nyman ◽  
Veera Kainulainen ◽  
Ilkka Miettinen ◽  
Pia Siljamäki ◽  
...  

2018 ◽  
Vol 52 (3) ◽  
pp. 220-229 ◽  
Author(s):  
Qingru Jiang ◽  
Veera Kainulainen ◽  
Iva Stamatova ◽  
Riitta Korpela ◽  
Jukka H. Meurman

Probiotic administration may favour caries prevention, as recent research has shown. This in vitro study aimed to investigate the growth of Lactobacillus rhamnosus GG (LGG) in experimental biofilms exposed to various carbohydrates, and also to assess its cariogenic potential. Multispecies experimental oral biofilms with or without LGG were grown with a sole-carbohydrate source (fructose/glucose/lactose/sorbitol/sucrose). The viable cells of LGG and structure of the biofilms were examined after 64.5 h of incubation, and pH values of spent media were measured at 16.5, 40.5, and 64.5 h. Fermentation profiles of LGG in biofilm media were assessed with study carbohydrate as the sole energy source. Our results showed that LGG reached higher viable cell numbers with glucose and sucrose in 64.5-h multispecies experimental oral biofilms compared to other carbohydrates. When LGG was incorporated in biofilms, no distinct pH changes at any time points were observed under any of the carbohydrates used; the pH values of spent media at each time point were lower when lactose was used, compared to other carbohydrates. The fermentation profiles of LGG in biofilm media were similar to its growth in MRS (no obvious growth with lactose or sucrose). In conclusion, LGG in our in vitro multispecies experimental oral biofilms was capable of surviving and growing well in each carbohydrate source. LGG might not have harmful effects on dental hard tissues. Another finding from our study was that the lowest pH values were observed in the presence of lactose, and the thickest biofilms were in sucrose.


PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219038 ◽  
Author(s):  
Emanuela Marini ◽  
Mara Di Giulio ◽  
Giovanna Ginestra ◽  
Gloria Magi ◽  
Silvia Di Lodovico ◽  
...  

2006 ◽  
Vol 19 (12) ◽  
pp. 1348-1358 ◽  
Author(s):  
Harold J. G. Meijer ◽  
Peter J. I. van de Vondervoort ◽  
Qing Yuan Yin ◽  
Chris G. de Koster ◽  
Frans M. Klis ◽  
...  

The oomycete genus Phytophthora comprises a large group of fungal-like plant pathogens. Two Phytophthora genomes recently have been sequenced; one of them is the genome of Phytophthora ramorum, the causal agent of sudden oak death. During plant infection, extracellular proteins, either soluble secreted proteins or proteins associated with the cell wall, play important roles in the interaction with host plants. Cell walls of P. ramorum contain 1 to 1.5% proteins, the remainder almost exclusively being accounted for by glucan polymers. Here, we present an inventory of cell-wall-associated proteins based on mass spectrometric sequence analysis of tryptic peptides obtained by proteolytic digestion of sodium dodecyl sulfate-treated mycelial cell walls. In total, 17 proteins were identified, all of which are authentic secretory proteins. Functional classification based on homology searches revealed six putative mucins or mucin-like proteins, five putative glycoside hydrolases, two transglutaminases, one annexin-like protein, the elicitin protein RAM5, one protein of unknown function, and one Kazal-type protease inhibitor. We propose that the cell wall proteins thus identified are important for pathogenicity.


2010 ◽  
Vol 5 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Jelena Begovic ◽  
Djordje Fira ◽  
Amarela Terzic-Vidojevic ◽  
Ljubisa Topisirovic

AbstractLactobacilli represent normal commensals of the human body, particularly in the gut and vagina where they protect these environments from incoming pathogens via a variety of mechanisms. The influence of the carbohydrate source present in reconstituted MRS growth medium on the different cell properties of two Lactobacillus rhamnosus strains were examined. Two human vaginal isolates, BGHV719 and exopolysaccharide producer strain BGHV954 were analyzed. The results demonstrated that unlike in reconstituted MRS with glucose as a carbon source, the presence of fructose, mannose, or rhamnose, significantly reduced cell surface hydrophobicity of both strains. In addition, differences in cell wall protein composition of L. rhamnosus BGHV719 and alterations in colony mucoidity of L. rhamnosus BGHV954 were also demonstrated. Light and SEM microscopy revealed differences on the cellular level when BGHV719 was cultivated in the presence of different sugars. The results of this study point out the importance of complex relationships between growth medium composition and the different aspects of bacterial behavior, and call for more detailed analyses of versatile bacterial responses to the changes in the environment, including vaginal ecosystem. This is especially important since lactobacilli are amongst the most widely used of probiotics.


2014 ◽  
Vol 5 ◽  
Author(s):  
Kristen A. Brileya ◽  
Laura B. Camilleri ◽  
Grant M. Zane ◽  
Judy D. Wall ◽  
Matthew W. Fields

2012 ◽  
Vol 29 (Special Issue) ◽  
pp. S49-S54 ◽  
Author(s):  
G. Kunová ◽  
V. Rada ◽  
I. Lisová ◽  
Š. Ročková ◽  
E. Vlková

Twelve strains of lactobacilli were tested for their growth and ability to utilise six prebiotics (pure substances and commercially available prebiotics) as a sole carbon source. All strains showed a considerable growth on all prebiotics tested. Inulin was the best carbohydrate source for lactobacilli, followed by lactulose and raffinose. A massive increase of viable cells on commercial prebiotic mixtures (Vivinal, Oligomate 55, and Orafti P95) was also observed. Lysozyme susceptibility was assayed in 13 strains of lactobacilli. Eight out of 13 strains were completely resistant to the lysozyme concentration of 400 µg/ml, in the rest of the strains a slight delay of the exponential phase of the growth curves was observed. Lactobacilli tolerated lysozyme well and were able to utilise all prebiotics.


2003 ◽  
Vol 69 (10) ◽  
pp. 6091-6098 ◽  
Author(s):  
Henri Kornmann ◽  
Philippe Duboc ◽  
Ian Marison ◽  
Urs von Stockar

ABSTRACT The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10929
Author(s):  
Go Furusawa ◽  
Nor Azura Azami ◽  
Aik-Hong Teh

Background Oligosaccharides from polysaccharides containing uronic acids are known to have many useful bioactivities. Thus, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) involved in producing the oligosaccharides have attracted interest in both medical and industrial settings. The numerous polysaccharide lyases and glycoside hydrolases involved in producing the oligosaccharides were isolated from soil and marine microorganisms. Our previous report demonstrated that an agar-degrading bacterium, Catenovulum sp. CCB-QB4, isolated from a coastal area of Penang, Malaysia, possessed 183 glycoside hydrolases and 43 polysaccharide lyases in the genome. We expected that the strain might degrade and use uronic acid-containing polysaccharides as a carbon source, indicating that the strain has a potential for a source of novel genes for degrading the polysaccharides. Methods To confirm the expectation, the QB4 cells were cultured in artificial seawater media with uronic acid-containing polysaccharides, namely alginate, pectin (and saturated galacturonate), ulvan, and gellan gum, and the growth was observed. The genes involved in degradation and utilization of uronic acid-containing polysaccharides were explored in the QB4 genome using CAZy analysis and BlastP analysis. Results The QB4 cells were capable of using these polysaccharides as a carbon source, and especially, the cells exhibited a robust growth in the presence of alginate. 28 PLs and 22 GHs related to the degradation of these polysaccharides were found in the QB4 genome based on the CAZy database. Eleven polysaccharide lyases and 16 glycoside hydrolases contained lipobox motif, indicating that these enzymes play an important role in degrading the polysaccharides. Fourteen of 28 polysaccharide lyases were classified into ulvan lyase, and the QB4 genome possessed the most abundant ulvan lyase genes in the CAZy database. Besides, genes involved in uronic acid metabolisms were also present in the genome. These results were consistent with the cell growth. In the pectin metabolic pathway, the strain had genes for three different pathways. However, the growth experiment using saturated galacturonate exhibited that the strain can only use the pathway related to unsaturated galacturonate.


Author(s):  
Robert Fultz ◽  
Taylor Ticer ◽  
Janiece Glover ◽  
Leah Stripe ◽  
Melinda A. Engevik

Background: Multiple studies have found that streptococci have a synergistic relationship with Candida species, but the details of these interactions are still being discovered. Candida species are covered by mannan, a polymer of mannose, which could serve as a carbon source for certain microbes. We hypothesized that streptococci that possess mannan-degrading glycosyl hydrolases would also be able to enzymatically cleave mannose residues, which could serve as a primary carbohydrate source to support growth. Methods & Results: We analyzed 90 streptococci genomes to predict the capability of streptococci to transport and utilize mannose and to degrade diverse mannose-linkages found on mannan. The genome analysis revealed mannose transporters and downstream pathways in most streptococci, but only <50% of streptococci harbored the glycosyl hydrolases required for mannan degradation. To confirm the ability of streptococci to use mannose or mannan, we grew 6 representative streptococci in a chemically defined media lacking glucose supplemented with mannose, yeast extract or purified mannan isolated from Candida and Saccharomyces strains. Although all tested Streptococcus strains could use mannose, S. salivarius and S. agalactiae , which did not possess mannan-degrading glycosyl hydrolases, could not use yeast extract or mannan to enhance their growth. In contrast, we found that S. mitis , S. parasanguinis, S. sanguinis , and S. pyogenes possessed the necessary glycosyl hydrolases to use yeast extract and isolated mannan, which promoted robust growth. Conclusions : Our data indicate that several streptococci are capable of degrading fungal mannans and harvesting mannose for energy. Importance: This work highlights a previously undescribed aspect of streptococcal- Candida interactions. Our work identifies that certain streptococci possess the enzymes required to degrade mannan and through this mechanism, they can release mannose residues from the cell wall of fungal species and use them as a nutrient source. We speculate that streptococci that can degrade fungal mannan may have a competitive advantage for colonization. This finding has broad implications for human health as streptococci and Candida are found at multiple body sites.


Sign in / Sign up

Export Citation Format

Share Document