scholarly journals Srrm234, but not canonical SR and hnRNP proteins drive inclusion of Dscam exon 9 variable exons

2019 ◽  
Author(s):  
Pinar Ustaoglu ◽  
Irmgard U. Haussmann ◽  
Hongzhi Liao ◽  
Antonio Torres-Mendez ◽  
Roland Arnold ◽  
...  

AbstractAlternative splicing of pre-mRNA is a major mechanism to diversify protein functionality in metazoans from a limited number of genes. In the Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) important for neuronal wiring up to 38,016 isoforms can be generated by mutually exclusive alternative splicing in four clusters of variable exons. However, it is not understood how a specific exon is chosen from the many variables and how variable exons are prevented from being spliced together. A main role in the regulation of Dscam alternative splicing has been attributed to RNA binding proteins, but how they impact on exon selection is not well understood. Serine-arginine-rich (SR) proteins and hnRNP proteins are the two main types of RNA binding proteins with major roles in exon definition and splice site selection. Here, we analyzed the role of SR and hnRNP proteins in Dscam exon 9 alternative splicing in mutant Drosophila melanogaster embryos because of their essential function for development. Strikingly, loss or overexpression of canonical SR and hnRNP proteins even when multiple proteins are depleted together, does not affect Dscam alternative exon selection very dramatically. Conversely, non-canonical SR protein Serine-arginine repetitive matrix 2/3/4 (Srrm234) is a main determinant of exon inclusion in Dscam exon 9 cluster. Since long-range base-pairings are absent in the exon 9 cluster, our data argue for a small complement of regulatory factors as main determinants of exon inclusion in the Dscam exon 9 cluster.

2001 ◽  
Vol 21 (4) ◽  
pp. 1285-1296 ◽  
Author(s):  
Andrea N. Ladd ◽  
Nicolas Charlet-B. ◽  
Thomas A. Cooper

ABSTRACT Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.


1993 ◽  
Vol 13 (9) ◽  
pp. 5323-5330 ◽  
Author(s):  
S A Amero ◽  
M J Matunis ◽  
E L Matunis ◽  
J W Hockensmith ◽  
G Raychaudhuri ◽  
...  

The protein on ecdysone puffs (PEP) is associated preferentially with active ecdysone-inducible puffs on Drosophila polytene chromosomes and contains sequence motifs characteristic of transcription factors and RNA-binding proteins (S. A. Amero, S. C. R. Elgin, and A. L. Beyer, Genes Dev. 5:188-200, 1991). PEP is associated with RNA in vivo, as demonstrated here by the sensitivity of PEP-specific chromosomal immunostaining in situ to RNase digestion and by the immunopurification of PEP in Drosophila cell extract with heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. As revealed by sequential immunostaining, PEP is found on a subset of chromosomal sites bound by the HRB (heterogeneous nuclear RNA-binding) proteins, which are basic Drosophila hnRNPs. These observations lead us to suggest that a unique, PEP-containing hnRNP complex assembles preferentially on the transcripts of ecdysone-regulated genes in Drosophila melanogaster presumably to expedite the transcription and/or processing of these transcripts.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


RNA Biology ◽  
2019 ◽  
Vol 16 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Zeng-Zhang Zheng ◽  
Xia Sun ◽  
Bei Zhang ◽  
Jia Pu ◽  
Ze-Yu Jiang ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Leandro Lucero ◽  
Jeremie Bazin ◽  
Johan Rodriguez Melo ◽  
Fernando Ibañez ◽  
Martín D. Crespi ◽  
...  

RNA-Binding Protein 1 (RBP1) was first identified as a protein partner of the long noncoding RNA (lncRNA) ENOD40 in Medicago truncatula, involved in symbiotic nodule development. RBP1 is localized in nuclear speckles and can be relocalized to the cytoplasm by the interaction with ENOD40. The two closest homologs to RBP1 in Arabidopsis thaliana were called Nuclear Speckle RNA-binding proteins (NSRs) and characterized as alternative splicing modulators of specific mRNAs. They can recognize in vivo the lncRNA ALTERNATIVE SPLICING COMPETITOR (ASCO) among other lncRNAs, regulating lateral root formation. Here, we performed a phylogenetic analysis of NSR/RBP proteins tracking the roots of the family to the Embryophytes. Strikingly, eudicots faced a reductive trend of NSR/RBP proteins in comparison with other groups of flowering plants. In Medicago truncatula and Lotus japonicus, their expression profile during nodulation and in specific regions of the symbiotic nodule was compared to that of the lncRNA ENOD40, as well as to changes in alternative splicing. This hinted at distinct and specific roles of each member during nodulation, likely modulating the population of alternatively spliced transcripts. Our results establish the basis to guide future exploration of NSR/RBP function in alternative splicing regulation in different developmental contexts along the plant lineage.


1995 ◽  
Vol 129 (3) ◽  
pp. 551-560 ◽  
Author(s):  
H Siomi ◽  
G Dreyfuss

The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta-galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.


Sign in / Sign up

Export Citation Format

Share Document