scholarly journals Kelch13 and MDR1 Polymorphisms, and Drug Effectiveness at Day 3 after Dihydroartemisinin-Piperaquine Treatment for Plasmodium falciparum Malaria on Bioko Island, Equatorial Guinea: 2014-2017

2019 ◽  
Author(s):  
Yu-Zhong Zheng ◽  
Jiang-Tao Chen ◽  
Xue-Yan Liang ◽  
Carlos Salas Ehapo ◽  
Urbano Monsuy Eyi ◽  
...  

ABSTRACTArtemisinin (ART) combination therapies were introduced on malaria endemic Bioko Island in 2004 through Bioko Island Malaria Control Project. Recently, ART-resistant Plasmodium falciparum strain with Kelch13 (K13) propeller M579I mutation originating from Equatorial Guinea was observed as an increased parasite clearance time on day 3 after dihydroartemisinin-Piperaquine (DHA-PIP) treatment (D3 positivity). Here, we surveyed DHA-PIP effectiveness and molecular markers of drug resistance at D3 after DHA-PIP treatment on Bioko Island from 2014 to 2017. Among the 371 uncomplicated P. falciparum patients, 86.3% (320/471) were successfully followed up at D3. 5.9% (19/320) of patients showed D3 positivity. K13 and MDR1 gene were successfully sequenced from 46 patients collected at D0 (baseline population) and 19 D3-positivity patients. Five non-synonymous K13 mutations (H136N; K189N; K248N; K326E; K332N) were found. There was no statistical difference in the frequency of these K13 mutations between baseline population and D3-positivity samples (p>0.05). Additionally, none of the K13 propeller polymorphisms known to be involved in ART-resistance in Asia or Africa were detected. For MDR1 gene, 38.5% (25/65) carried N86Y mutation; 73.8% (48/65) the Y184F mutation. Parasites surviving DHA-PIP at D3 post-treatment were significantly more likely than the baseline population to carry the N86Y (p <0.05). These results suggest that K13 is not the best predictive molecular marker for ART resistance in Africa. More isolates from cases with delayed parasite clearance after DHA-PIP treatment indicated that in vitro and in vivo monitoring for ART derivatives and ACT partner drugs should be regularly performed on Bioko Island, Equatorial Guinea.

2014 ◽  
Vol 58 (6) ◽  
pp. 3157-3161 ◽  
Author(s):  
Kesinee Chotivanich ◽  
Rupam Tripura ◽  
Debashish Das ◽  
Poravuth Yi ◽  
Nicholas P. J. Day ◽  
...  

ABSTRACTConventional 48-hin vitrosusceptibility tests have low sensitivity in identifying artemisinin-resistantPlasmodium falciparum, defined phenotypically by lowin vivoparasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistantP. falciparumis prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P= 0.001). TMI IC50s correlated significantly with thein vivoresponses to artesunate (parasite clearance time [r= 0.44,P= 0.001] and parasite clearance half-life [r= 0.46,P= 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.


2021 ◽  
Author(s):  
Maisha Khair Nima ◽  
Saiful Arefeen Sazed ◽  
Angana Mukherjee ◽  
Muhammad Riadul Haque Hossainey ◽  
Ching Swe Phru ◽  
...  

The emergence of resistance to artemisinin drugs threatens global malaria control. Resistance is widely seen in South East Asia (SEA) and Myanmar, but not comprehensively assessed in Bangladesh. This is due to lack of measuring parasite clearance times in response to drug treatment, a gold standard used to track artemisinin resistance (AR), in the Chittagong Hill Tracts (CHT), where >90% of malaria occurs in Bangladesh. Here we report delay in clinical parasite clearance half-lives > 5 h characteristic of AR, in Bandarban, a south–eastern rural, CHT district with escalating malaria and bordering Myanmar. Thirty–one and 68 malaria patients respectively presented in the clinic in 2018 and 2019, and this increase well correlated to the district–level malaria surge and rise in rainfall, humidity and temperature. A total of 27 patients with uncomplicated Plasmodium falciparum malaria mono–infection, after administration of an artemisinin combination therapy (ACT) showed median (range) parasite clearance half–life and time of 5.6 (1.5 —9.6) and 24 (12—48) hours (h) respectively. The frequency distribution of parasite clearance half–life and time was bimodal, with a slower parasite clearance of 8 h in 20% of the participants. There was however, no detectable parasitemia 72 h after initiating ACT. Half-life clearance of > 5h, respectively seen in 35% and 40% of participants in 2018 and 2019, lacked in correlation to initial parasitemia, blood count parameters or resistance mutations of PfKelch13 (K13, the major parasite marker of AR). Culture adapted strains await assessment of in vitro resistance and new parasite determinants of AR.


2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)


2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites has led to increasing rates of treatment failure with first-line ART-based combination therapies (ACTs) in Southeast Asia. In this region, select mutations in K13 can result in delayed parasite clearance rates in vivo and enhanced survival in the ring-stage survival assay (RSA) in vitro. Our genotyping of 3,299 P. falciparum isolates across 11 sub-Saharan countries reveals the continuing dominance of wild-type K13 and confirms the emergence of a K13 R561H variant in Rwanda. Using gene editing, we provide definitive evidence that this mutation, along with M579I and C580Y, can confer variable degrees of in vitro ART resistance in African P. falciparum strains. C580Y and M579I were both associated with substantial fitness costs in African parasites, which may counter-select against their dissemination in high-transmission settings. We also report the impact of multiple K13 mutations, including the predominant variant C580Y, on RSA survival rates and fitness in multiple Southeast Asian strains. No change in ART susceptibility was observed upon editing point mutations in ferrodoxin or mdr2, earlier associated with ART resistance in Southeast Asia. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.


Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4301-4310 ◽  
Author(s):  
Prasad Dasari ◽  
Sophia D. Heber ◽  
Maike Beisele ◽  
Michael Torzewski ◽  
Kurt Reifenberg ◽  
...  

Abstract Severe Plasmodium falciparum malaria evolves through the interplay among capillary sequestration of parasitized erythrocytes, deregulated inflammatory responses, and hemostasis dysfunction. After rupture, each parasitized erythrocyte releases not only infective merozoites, but also the digestive vacuole (DV), a membrane-bounded organelle containing the malaria pigment hemozoin. In the present study, we report that the intact organelle, but not isolated hemozoin, dually activates the alternative complement and the intrinsic clotting pathway. Procoagulant activity is destroyed by phospholipase C treatment, indicating a critical role of phospholipid head groups exposed at the DV surface. Intravenous injection of DVs caused alternative pathway complement consumption and provoked apathy and reduced nociceptive responses in rats. Ultrasonication destroyed complement-activating and procoagulant properties in vitro and rendered the DVs biologically inactive in vivo. Low-molecular-weight dextran sulfate blocked activation of both complement and coagulation and protected animals from the harmful effects of DV infusion. We surmise that in chronic malaria, complement activation by and opsonization of the DV may serve a useful function in directing hemozoin to phagocytic cells for safe disposal. However, when the waste disposal system of the host is overburdened, DVs may transform into a trigger of pathology and therefore represent a potential therapeutic target in severe malaria.


2020 ◽  
Vol 8 (1) ◽  
pp. 246-253
Author(s):  
Huynh Hong Quang ◽  
Chau Van Khanh ◽  
Phạm Thanh Hien ◽  
Nguyen Thanh Thuy Nhien ◽  
Do Van Nguyen ◽  
...  

Dihydroartemisinin-piperaquine (DHA-PPQ) is a current frontline drug recommended in global by WHO for the treatment of Plasmodium falciparum malaria (WHO, 2015), but is now failing in Vietnam’s provinces where border Cambodia, and has emerged and spread. The purpose of this study was to evaluate the efficacy and molecular markers of DHA-PPQ failures in Dak Lak province. Methods: A study design of non-randomized controlled study design for the 42 day-course follow-up in vivo test, and the molecular markers analysis. Findings: The data showed that adequate clinical and parasitological response was sharply declined to 12,1%, the proportion of late clinical failure was 51.5%, and 36.4% of patients had late parasitological. The proportion of positive parasitemia at D3 was 37%, the slope half-life was 5.36 hrs, and the progressive parasite clearance (PC) PC50, PC75, PC 90, PC95, and PC99 were 13.24; 19.29; 25.69; 29.97 and 39.15 hours, respectively. Molecular markers of C580Y Kelch mutation were observed in 100% (50/50) of the patients, the increased of Plasmepsine 2 copy number variation (CNV) was 72% (36/50), and the proportion of patients who had both K13 and increased Plasmepsine 2 CNV was 72% (36/50). Conclusions: The DHA-PPQ efficacy severely decreased to 12.1%, overall treatment failure was 87.9% with the prominent C580Y mutant plus increased Plasmepsine 2 CNV in delayed asexual P. falciparum parasite clearance. These obvious data suggest the urgency to change antimalarial policy in DHA-PPQ resistance zones, especially in Dak Lak province.


The Lancet ◽  
1997 ◽  
Vol 350 (9093) ◽  
pp. 1776
Author(s):  
Peter G Kremsner ◽  
Christian H Brandts ◽  
Maryse Ndjave ◽  
Wolfgang Graninger

2014 ◽  
Vol 58 (12) ◽  
pp. 7390-7397 ◽  
Author(s):  
Maria Isabel Veiga ◽  
Nuno S. Osório ◽  
Pedro Eduardo Ferreira ◽  
Oscar Franzén ◽  
Sabina Dahlstrom ◽  
...  

ABSTRACTPlasmodium falciparumhas the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including theApicomplexaparasites.P. falciparumgenome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters:Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studiedPfmrp2. The role ofPfmrp2polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of thePfmrp2genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found thatPfmrp2harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identifiedPfmrp2polymorphisms with alteredin vitrosusceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggestedPfmrp2polymorphisms modulate the parasite'sin vitroresponse to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association within vivoparasite clearance. In conclusion, our study reveals that thePfmrp2gene is the most diverse ABC transporter known inP. falciparumwith a potential role in antimalarial drug resistance.


1996 ◽  
Vol 40 (8) ◽  
pp. 1846-1854 ◽  
Author(s):  
R G Ridley ◽  
W Hofheinz ◽  
H Matile ◽  
C Jaquet ◽  
A Dorn ◽  
...  

We have synthesized several 4-aminoquinolines with shortened side chains that retain activity against chloroquine-resistant isolates of Plasmodium falciparum malaria (W. Hofheinz, C. Jaquet, and S. Jolidon, European patent 94116281.0, June 1995). We report here an assessment of the activities of four selected compounds containing ethyl, propyl, and isopropyl side chains. Reasonable in vitro activity (50% inhibitory concentration, < 100 nM) against chloroquine-resistant P. falciparum strains was consistently observed, and the compounds performed well in a variety of plasmodium berghei animal models. However, some potential drawbacks of these compounds became evident upon in-depth testing. In vitro analysis of more than 70 isolates of P. falciparum and studies with a mouse in vivo model suggested a degree of cross-resistance with chloroquine. In addition, pharmacokinetic analysis demonstrated the formation of N-dealkylated metabolites of these compounds. These metabolites are similarly active against chloroquine-susceptible strains but are much less active against chloroquine-resistant strains. Thus, the clinical dosing required for these compounds would probably be greater for chloroquine-resistant strains than for chloroquine-susceptible strains. The clinical potential of these compounds is discussed within the context of chloroquine's low therapeutic ratio and toxicity.


Sign in / Sign up

Export Citation Format

Share Document