scholarly journals Telomeric small RNAs in the genus Caenorhabditis

2019 ◽  
Author(s):  
Stephen Frenk ◽  
Evan H. Lister-Shimauchi ◽  
Shawn Ahmed

AbstractTelomeric DNA is composed of simple tandem repeat sequences and has a G-rich strand that runs 5’ to 3’ towards the chromosome terminus. Small RNAs with homology to telomeres have been observed in several organisms and could originate from telomeres or from interstitial telomere sequences (ITSs), which are composites of degenerate and perfect telomere repeat sequences found on chromosome arms. We identified C. elegans small RNAs composed of the Caenorhabditis telomere sequence (TTAGGC)n with up to three mismatches, which might interact with telomeres. We rigorously defined ITSs for genomes of C. elegans and for two closely related nematodes, C. briggsae and C. remanei. We found that most telomeric small RNAs with mismatches originated from ITSs, which were depleted from mRNAs and but were enriched in introns whose genes often displayed hallmarks of genomic silencing. C. elegans small RNAs composed of perfect telomere repeats were very rare but were increased by several orders of magnitude in C. briggsae and C. remanei. Major small RNA species in C. elegans begin with a 5’ guanine nucleotide, which was strongly depleted from perfect telomeric small RNAs of all three Caenorhabditis species. Perfect telomeric small RNAs corresponding to the G-rich strand of the telomere commonly began with 5’ UAGGCU and 5’UUAGGC, whereas C-rich strand RNAs commonly begin with 5’CUAAGC. In contrast, telomeric small RNAs with mismatches had a mixture of all four 5’ nucleotides. Together, our results imply that perfect telomeric small RNAs have a mechanism of biogenesis that is distinct from known classes of small RNAs and that a dramatic change in their regulation occurred during recent Caenorhabditis evolution.

2018 ◽  
Author(s):  
Miguel Vasconcelos Almeida ◽  
António Miguel de Jesus Domingues ◽  
Hanna Lukas ◽  
Maria Mendez-Lago ◽  
René F. Ketting

AbstractRNA interference was first described in the nematode Caenorhabditis elegans. Ever since, several new endogenous small RNA pathways have been described and characterized to different degrees. Much like plants, but unlike Drosophila and mammals, worms have RNA-dependent RNA Polymerases (RdRPs) that directly synthesize small RNAs using other transcripts as a template. The very prominent secondary small interfering RNAs, also called 22G-RNAs, produced by the RdRPs RRF-1 and EGO-1 in C. elegans, maintain the 5’ triphosphate group, stemming from RdRP activity, also after loading into an Argonaute protein. This creates a technical issue, since 5’PPP groups decrease cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA species, a common practice in the field is the treatment of RNA samples, prior to library preparation, with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so an alternative must be devised. We turned to RNA 5’ pyrophosphohydrolase (RppH), a commercially available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species and show that RppH- and TAP-derived datasets can be used in direct comparison.


2019 ◽  
Author(s):  
Evan H. Lister-Shimauchi ◽  
Michael Dinh ◽  
Paul Maddox ◽  
Shawn Ahmed

SummaryTransgenerational Epigenetic Inheritance occurs when gametes transmit forms of information without altering genomic DNA1. Although deficiency for telomerase in human families causes transgenerational shortening of telomeres2, a role for telomeres in Transgenerational Epigenetic Inheritance is unknown. Here we show that Protection Of Telomeres 1 (Pot1) proteins, which interact with single-stranded telomeric DNA3,4, function in gametes to regulate developmental expression of telomeric foci for multiple generations. C. elegans POT-1 and POT-25,6 formed abundant telomeric foci in adult germ cells that vanished in 1-cell embryos and gradually accumulated during development. pot-2 mutants displayed abundant POT-1::mCherry foci throughout development. pot-2 mutant gametes created F1 cross-progeny with constitutively abundant POT-1::mCherry and mNeonGreen::POT-2 foci, which persisted for 6 generations but did not alter telomere length. pot-1 mutant and pot-2; pot-1 double mutant gametes gave rise to progeny with constitutively diminished Pot1 foci. Genomic silencing and small RNAs potentiate many transgenerational effects7 but did not affect Pot1 foci. We conclude that C. elegans POT-1 functions at telomeres of pot-2 mutant gametes to create constitutively high levels of Pot1 foci in future generations. As regulation of telomeres and Pot1 have been tied to cancer8,9, this novel and highly persistent form of Transgenerational Epigenetic Inheritance could be relevant to human health.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjing Qi ◽  
Erika D. V. Gromoff ◽  
Fan Xu ◽  
Qian Zhao ◽  
Wei Yang ◽  
...  

AbstractMulticellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Biochimie ◽  
1997 ◽  
Vol 79 (9-10) ◽  
pp. 577-586 ◽  
Author(s):  
H. Debrauwere ◽  
C.G. Gendrel ◽  
S. Lechat ◽  
M. Dutreix

2017 ◽  
Vol 152 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Gui-xiang Wang ◽  
Qun-yan He ◽  
Jiri Macas ◽  
Petr Novák ◽  
Pavel Neumann ◽  
...  

Whole-genome shotgun reads were analyzed to determine the repeat sequence composition in the genome of black mustard, Brassica nigra (L.) Koch. The analysis showed that satellite DNA sequences are very abundant in the black mustard genome. The distribution pattern of 7 new tandem repeats (BnSAT13, BnSAT28, BnSAT68, BnSAT76, BnSAT114, BnSAT180, and BnSAT200) on black mustard chromosomes was visualized using fluorescence in situ hybridization (FISH). The FISH signals of BnSAT13 and BnSAT76 provided useful cytogenetic markers; their position and fluorescence intensity allowed for unambiguous identification of all 8 somatic metaphase chromosomes. A karyotype showing the location and fluorescence intensity of these tandem repeat sequences together with the position of rDNAs and centromeric retrotransposons of Brassica (CRB) was constructed. The establishment of the FISH-based karyotype in B. nigra provides valuable information that can be used in detailed analyses of B. nigra accessions and derived allopolyploid Brassica species containing the B genome.


2014 ◽  
Author(s):  
Alper Akay ◽  
Peter Sarkies ◽  
Eric Alexander Miska

The discovery of RNA interference (RNAi) in C. elegans has had a major impact on scientific research, led to the rapid development of RNAi tools and has inspired RNA-based therapeutics. Astonishingly, nematodes, planaria and many insects take up double-stranded RNA (dsRNA) from their environment to elicit RNAi; the biological function of this mechanism is unclear. Recently, the E. coli OxyS non-coding RNA was shown to regulate gene expression in C. elegans when E. coli is offered as food. This was surprising given that C. elegans is unlikely to encounter E. coli in nature. To directly test the hypothesis that the E. coli OxyS non-coding RNA triggers the C. elegans RNAi pathway, we sequenced small RNAs from C. elegans after feeding with bacteria. We clearly demonstrate that the OxyS non-coding RNA does not trigger an RNAi response in C. elegans. We conclude that the biology of environmental RNAi remains to be discovered.


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ulfar Bergthorsson ◽  
Caroline J. Sheeba ◽  
Anke Konrad ◽  
Tony Belicard ◽  
Toni Beltran ◽  
...  

Abstract Background Transposable elements (TEs) are an almost universal constituent of eukaryotic genomes. In animals, Piwi-interacting small RNAs (piRNAs) and repressive chromatin often play crucial roles in preventing TE transcription and thus restricting TE activity. Nevertheless, TE content varies widely across eukaryotes and the dynamics of TE activity and TE silencing across evolutionary time is poorly understood. Results Here, we used experimentally evolved populations of C. elegans to study the dynamics of TE expression over 409 generations. The experimental populations were evolved at population sizes of 1, 10 and 100 individuals to manipulate the efficiency of natural selection versus genetic drift. We demonstrate increased TE expression relative to the ancestral population, with the largest increases occurring in the smallest populations. We show that the transcriptional activation of TEs within active regions of the genome is associated with failure of piRNA-mediated silencing, whilst desilenced TEs in repressed chromatin domains retain small RNAs. Additionally, we find that the sequence context of the surrounding region influences the propensity of TEs to lose silencing through failure of small RNA-mediated silencing. Conclusions Our results show that natural selection in C. elegans is responsible for maintaining low levels of TE expression, and provide new insights into the epigenomic features responsible.


Sign in / Sign up

Export Citation Format

Share Document