scholarly journals The ebb and flow of heteroplasmy during intra-species hybridization in Caenorhabditis briggsae

2019 ◽  
Author(s):  
Shadi Adineh ◽  
Joseph A. Ross

ABSTRACTMitochondria are typically maternally inherited. In many species, this transmission pattern is produced by sperm-borne mitochondria being eliminated either from sperm before fertilization or from the embryo after fertilization. In the nematode Caenorhabditis briggsae, repeatedly backcrossing hybrids to genetically diverse males can elicit paternal mitochondrial transmission. Studies of other taxa also suggest that hybridization increases paternal mitochondrial transmission. Thus, hybrid genotypes might disrupt the systems that normally prevent paternal mitochondrial transmission. Given the reliance of a number of genetic analyses on the assumption of purely maternal mitochondrial inheritance, it would be broadly valuable to learn more about the processes embryos employ to prevent sperm-borne mitochondria from persisting in offspring, as well as the circumstances under which paternal transmission might be expected to occur. To quantify the tempo of paternal mitochondrial transmission in hybrids, we assessed the presence of paternal mitotypes in replicate lines at three timepoints spanning fifteen generations. All lines exhibited paternal mitochondrial transmission. However, this heteroplasmy always then resolved to homoplasmy for the maternal mitotype. Additionally, one nuclear locus exhibited allele transmission ratio distortion that might reflect mito-nuclear co-evolution. This study frames the genetic architecture of a hybrid genetic incompatibility that leads to paternal mitochondrial transmission and to a reduction in hybrid fitness.

2006 ◽  
Vol 14 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Nicola L Dean ◽  
J Concepción Loredo-Osti ◽  
T Mary Fujiwara ◽  
Kenneth Morgan ◽  
Seang Lin Tan ◽  
...  

Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1299-1304
Author(s):  
F Pardo-Manuel de Villena ◽  
C Slamka ◽  
M Fonseca ◽  
A K Naumova ◽  
J Paquette ◽  
...  

Abstract We determined the genotypes of >200 offspring that are survivors of matings between female reciprocal F1 hybrids (between the DDK and C57BL/6J inbred mouse strains) and C57BL/6J males at markers linked to the Ovum mutant (Om) locus on chromosome 11. In contrast to the expectations of our previous genetic model to explain the “DDK syndrome,” the genotypes of these offspring do not reflect preferential survival of individuals that receive C57BL/6J alleles from the F1 females in the region of chromosome 11 to which the Om locus has been mapped. In fact, we observe significant transmission-ratio distortion in favor of DDK alleles in this region. These results are also in contrast to the expectations of Wakasugi's genetic model for the inheritance of Om, in which he proposed equal transmission of DDK and non-DDK alleles from F1 females. We propose that the results of these experiments may be explained by reduced expression of the maternal DDK Om allele or expression of the maternal DDK Om allele in only a portion of the ova of F1 females


2006 ◽  
Vol 17 (3) ◽  
pp. 239-247 ◽  
Author(s):  
Reiner Schulz ◽  
Lara A. Underkoffler ◽  
Joelle N. Collins ◽  
Rebecca J. Oakey

Genomics ◽  
1992 ◽  
Vol 12 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Stephen H. Pilder ◽  
Cindy L. Decker ◽  
Salim Islam ◽  
Christine Buck ◽  
Judith A. Cebra-Thomas ◽  
...  

1991 ◽  
Vol 57 (2) ◽  
pp. 153-157 ◽  
Author(s):  
William Garside ◽  
Christine Ruangvoravat ◽  
Patricia Dolan ◽  
Nina Hillman

SummaryThe effects of different types of insemination (normal and delayed matings and in vitro fertilization) on the transmission ratio distortion (TRD) of three t haplotypes were determined. The tw73 haplotype which contains all of the loci known to affect TRD is transmitted at equivalent frequencies in normal matings and in in vitro fertilizations (0·84 and 0·85, respectively) but at a significantly lower frequency (0·62) in delayed matings. The distal partial th18 haplotype is transmitted at equivalent frequencies in all types of insemination (0·66 to 0·70) while the proximal partial tw18 haplotype is transmitted in Mendelian frequencies in normal matings and in in vitro inseminations but at a significantly lower frequency in delayed matings. The results are discussed with reference to the current genetic model for transmission ratio distortion.


1989 ◽  
Vol 54 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Lee M. Silver

SummaryComplete t haplotypes can be transmitted at distorted ratios from heterozygous +/t male mice as a consequence of t-specific alleles at a series of t complex distorter loci (Tcd-1t through Tcd-4t) and a t complex responder locus. Partial t haplotypes that lack the Tcd-2t allele cannot be transmitted at the very high ratios characteristic of complete t haplotypes. The breeding studies reported here tested the possibility that the absence of Tcd-2t could be compensated for by the presence of double doses of other Tcdt alleles. The results indicate that a double dose of Tcd-4t alone will not work, but that a double dose of both Tcd-1t and Tcd-4t can promote a very high transmission ratio in the absence of Tcd-2t. These results suggest that the extent to which transmission ratios are distorted is dependent upon the absolute level of expression of the individual Tcd genes. Further studies of genotypic effects on transmission ratio distortion, as well as fertility, lead to the suggestion of a fifth t complex distorter (Tcd-5) locus within t haplotypes.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 12-13
Author(s):  
Daiane C Becker Scalez ◽  
Samir Id-Lahoucine ◽  
Pablo A S Fonseca ◽  
Joaquim Casellas ◽  
Angela Cánovas

Abstract Transmission ratio distortion (TRD) is a process when one allele from either parent is preferentially transmitted to the offspring. The identification of genomic regions affected by TRD might help in the detection of lethal alleles or potential genes affecting reproduction. Here, we investigated TRD in crossbreed beef cattle population aiming to identify genomic regions showing altered deviations in segregation that could be affecting reproduction performance. A total of 237 genotyped animals were used including 46 sires, 80 dams, and 111 parent-offspring (trios). The predominant breeds of these animals were Angus (61.83%), Simmental (18.99%), Gelbvieh (6.12%), Charolais (3.65%), Hereford (2.46%) and Limousin (1.57%). After excluding SNPs with minor allele frequency lower than 0.05 and call-rate lower than 0.90, a total of 369,902 autosomal SNPs were retained for further analyses. The SNP-by-SNP analysis was performed within a Bayesian framework using TRDscanv.2.0 software, using 100,000 iterations, with 10,000 iterations being discarded as burn-in. As table 1 shows, 33 SNPs were identified with TRD, considering a Bayes Factor (BF)≥100 and the approximate empirical null distribution of TRD at 0.01% margin error. Among them, 26 SNPs were parent-unspecific and 7 SNPs were parent-specific TRD. For parent-specific TRD, 214 were identified for sire- and 162 for dam-TRD (BF≥100). Among them, 4 SNPs were detected with sire- and dam-TRD in opposite direction of preference of transmission. Preliminary functional and positional analysis was performed using the list of TRD regions with BF≥100 and the approximate empirical null distribution of TRD at 0.01% margin error. For sire-TRD, 14% of the identified QTL (n = 254) were related to non-return rate. For dam-TRD, 21 regions related to conception rate were found (1.5%) and 13 regions related to stillbirth (0.93%). Haplotype analysis is in progress to identify additional candidate regions and alleles with TRD to better understand this phenomenon in a crossbreed beef population.


Sign in / Sign up

Export Citation Format

Share Document