scholarly journals The L1 stalk is required for efficient export of nascent large ribosomal subunits in yeast

2019 ◽  
Author(s):  
Sharmishtha Musalgaonkar ◽  
Joshua J. Black ◽  
Arlen W. Johnson

AbstractThe ribosomal protein Rpl1 (uL1 in universal nomenclature) is essential in yeast and constitutes part of the L1 stalk which interacts with E site ligands on the ribosome. Structural studies of nascent pre-60S complexes in yeast have shown that a domain of the Crm1-dependent nuclear export adapter Nmd3, binds in the E site and interacts with Rpl1, inducing closure of the L1 stalk. Based on this observation, we decided to reinvestigate the role of the L1 stalk in nuclear export of pre-60S subunits despite previous work showing that Rpl1-deficient ribosomes are exported from the nucleus and engage in translation. Large cargoes, such as ribosomal subunits, require multiple export factors to facilitate their transport through the nuclear pore complex. Here, we show that pre-60S subunits lacking Rpl1 or truncated for the RNA of the L1 stalk are exported inefficiently. Surprisingly, this is not due to a measurable defect in recruitment of Nmd3 but appears to result from inefficient recruitment of the Mex67-Mtr2 heterodimer.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Fanny Eyboulet ◽  
Célia Jeronimo ◽  
Jacques Côté ◽  
François Robert

Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.


2020 ◽  
Author(s):  
Fanny Eyboulet ◽  
Célia Jeronimo ◽  
Jacques Côté ◽  
François Robert

ABSTRACTThe nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed and exported. The role of ubiquitylation in this process is increasingly recognized as the ubiquitylation of many key players have been shown to affect mRNA nuclear export. While a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here, we identified the deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts both with RNA polymerase II and with the nuclear pore complex, and its deletion reverts the nuclear export defect of mutants of the E3 ligase Rsp5. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.


2009 ◽  
Vol 185 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Evgeny Onischenko ◽  
Leslie H. Stanton ◽  
Alexis S. Madrid ◽  
Thomas Kieselbach ◽  
Karsten Weis

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


1986 ◽  
Vol 102 (3) ◽  
pp. 859-862 ◽  
Author(s):  
M Schindler ◽  
L W Jiang

Fluorescence redistribution after photobleaching (FRAP) was used to examine the role of actin and myosin in the transport of dextrans through the nuclear pore complex. Anti-actin antibodies added to isolated rat liver nuclei significantly reduced the flux rate of fluorescently labeled 64-kD dextrans. The addition of 3 mM ATP to nuclei, which enhances the flux rate in control nuclei by approximately 250%, had no enhancement effect in the presence of either anti-actin or anti-myosin antibody. Phalloidin (10 microM) and cytochalasin D (1 micrograms/ml) individually inhibited the ATP stimulation of transport. Rabbit serum, anti-fibronectin, and anti-lamins A and C antibodies had no effect on transport. These results suggest a model for nuclear transport in which actin/myosin are involved in an ATP-dependent process that alters the effective transport rate across the nuclear pore complex.


1997 ◽  
Vol 7 (10) ◽  
pp. 767-775 ◽  
Author(s):  
Megan Neville ◽  
Francoise Stutz ◽  
Linda Lee ◽  
Laura I Davis ◽  
Michael Rosbash

2013 ◽  
Vol 24 (24) ◽  
pp. 3920-3938 ◽  
Author(s):  
Mario Niepel ◽  
Kelly R. Molloy ◽  
Rosemary Williams ◽  
Julia C. Farr ◽  
Anne C. Meinema ◽  
...  

The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.


1999 ◽  
Vol 145 (4) ◽  
pp. 645-657 ◽  
Author(s):  
Ralph H. Kehlenbach ◽  
Achim Dickmanns ◽  
Angelika Kehlenbach ◽  
Tinglu Guan ◽  
Larry Gerace

We recently developed an assay in which nuclear export of the shuttling transcription factor NFAT (nuclear factor of activated T cells) can be reconstituted in permeabilized cells with the GTPase Ran and the nuclear export receptor CRM1. We have now used this assay to identify another export factor. After preincubation of permeabilized cells with a Ran mutant that cannot hydrolyze GTP (RanQ69L), cytosol supports NFAT export, but CRM1 and Ran alone do not. The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214. RanGTP-dependent association of CRM1 with these nucleoporins was reconstituted in vitro. By biochemical fractionation and reconstitution, we showed that RanBP1 restores nuclear export after the RanQ69L preincubation. It also stimulates nuclear export in cells that have not been preincubated with RanQ69L. RanBP1 as well as Ran-binding domains of the cytoplasmic nucleoporin RanBP2 promote the release of CRM1 from the NPC. Taken together, our results indicate that RanGTP is important for the targeting of export complexes to the cytoplasmic side of the NPC and that RanBP1 and probably RanBP2 are involved in the dissociation of nuclear export complexes from the NPC in a terminal step of transport.


2010 ◽  
Vol 38 (1) ◽  
pp. 273-277 ◽  
Author(s):  
Jindriska Fiserova ◽  
Martin W. Goldberg

Eukaryotic cells have developed a series of highly controlled processes of transport between the nucleus and cytoplasm. The present review focuses on the latest advances in our understanding of nucleocytoplasmic exchange of molecules in yeast, a widely studied model organism in the field. It concentrates on the role of individual proteins such as nucleoporins and karyopherins in the translocation process and relates this to how the organization of the nuclear pore complex effectively facilitates the bidirectional transport between the two compartments.


Sign in / Sign up

Export Citation Format

Share Document