scholarly journals High-throughput 16S rRNA gene sequencing reveals gut microbial changes in 6-hydroxydopamine-induced Parkinson’s disease mice

2019 ◽  
Author(s):  
Jin Gyu Choi ◽  
Eugene Huh ◽  
Namkwon Kim ◽  
Dong-Hyun Kim ◽  
Myung Sook Oh

AbstractRecently, there has been a rapid increase in studies on the relationship between brain diseases and gut microbiota, and clinical evidence on gut microbial changes in Parkinson’s disease (PD) has accumulated. 6-hydroxydopamine (6-OHDA) is a widely used neurotoxin that leads to PD pathogenesis, but whether the alterations of gut microbial community in 6-OHDA-treated mice has not been investigated. Here we performed the 16S rRNA gene sequencing to analyze changes in gut microbial community of mice. We found that there were no significant changes in species richness and its diversity in the 6-OHDA-lesioned mice. The relative abundance ofLactobacillus gasseriandL. reuteriprobiotic species in feces of 6-OHDA-lesioned mice was significantly decreased compared with those of sham-operated mice, while the commensal bacteriumBacteroides acidifaciensin 6-OHDA-treated mice was remarkably higher than sham-operated mice. These results provides a baseline for understanding the microbial communities of 6-OHDA-induced PD model to investigate the role of gut microbiota in the pathogenesis of PD.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


2021 ◽  
Author(s):  
Pei-Qin Cao ◽  
Xiu-Ping Li ◽  
Jian Ou-Yang ◽  
Rong-Gang Jiang ◽  
Fang-Fang Huang ◽  
...  

We evaluated the effects of yellow tea extract on relieving constipation induced by loperamide and evaluated the changes of gut microbiota based on 16S rRNA gene sequencing.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhou Jiang ◽  
Ping Li ◽  
Yanhong Wang ◽  
Han Liu ◽  
Dazhun Wei ◽  
...  

Abstract Microbial metabolisms of arsenic, iron, sulfur, nitrogen and organic matter play important roles in arsenic mobilization in aquifer. In this study, microbial community composition and functional potentials in a high arsenic groundwater were investigated using integrated techniques of RNA- and DNA-based 16S rRNA gene sequencing, metagenomic sequencing and functional gene arrays. 16S rRNA gene sequencing showed the sample was dominated by members of Proteobacteria (62.3–75.2%), such as genera of Simplicispira (5.7–6.7%), Pseudomonas (3.3–5.7%), Ferribacterium (1.6–4.4%), Solimonas (1.8–3.2%), Geobacter (0.8–2.2%) and Sediminibacterium (0.6–2.4%). Functional potential analyses indicated that organics degradation, assimilatory sulfate reduction, As-resistant pathway, iron reduction, ammonification, nitrogen fixation, denitrification and dissimilatory nitrate reduction to ammonia were prevalent. The composition and function of microbial community and reconstructed genome bins suggest that high level of arsenite in the groundwater may be attributed to arsenate release from iron oxides reductive dissolution by the iron-reducing bacteria, and subsequent arsenate reduction by ammonia-producing bacteria featuring ars operon. This study highlights the relationship between biogeochemical cycling of arsenic and nitrogen in groundwater, which potentially occur in other aquifers with high levels of ammonia and arsenic.


Urolithiasis ◽  
2018 ◽  
Vol 46 (6) ◽  
pp. 503-514 ◽  
Author(s):  
Ruiqiang Tang ◽  
Yonghua Jiang ◽  
Aihua Tan ◽  
Juan Ye ◽  
Xiaoying Xian ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Song ◽  
Lingzhi Li ◽  
Hongliang Huang ◽  
Keji Jiang ◽  
Fengying Zhang ◽  
...  

Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and a range of fitness in fish, but little is known about the gut microbial community in Antarctic fish. In this study, the composition of intestinal microbial community in four species of Antarctic fish was detected based on 16S rRNA gene sequencing. As a result, 1 004 639 sequences were obtained from 13 samples identified into 36 phyla and 804 genera, in which Proteobacteria, Actinobacteria, Firmicutes, Thermi, and Bacteroidetes were the dominant phyla, and Rhodococcus, Thermus, Acinetobacter, Propionibacterium, Streptococcus, and Mycoplasma were the dominant genera. The number of common OTUs (operational taxonomic units) varied from 346 to 768, while unique OTUs varied from 84 to 694 in the four species of Antarctic fish. Moreover, intestinal bacterial communities in individuals of each species were not really similar, and those in the four species were not absolutely different, suggesting that bacterial communities might influence the physiological characteristics of Antarctic fish, and the common bacterial communities might contribute to the fish survival ability in extreme Antarctic environment, while the different ones were related to the living habits. All of these results could offer certain information for the future study of Antarctic fish physiological characteristics.


2021 ◽  
Author(s):  
Lalhaba Oinam ◽  
Fumi Minoshima ◽  
Hiroaki Tateno

Background: There has been immense interest in studying the relationship between the gut microbiota and human health. Bacterial glycans modulate the cross talk between the gut microbiota and its host. However, little is known about these glycans because of the lack of appropriate technology to study them. Methods: We previously developed a sequencing-based glycan profiling method called Glycan-seq, which is based on the use of 39 DNA-barcoded lectins. In this study, we applied this technology to analyze the glycome of the intact gut microbiota of mice. Fecal microbiota was incubated with 39 DNA-barcoded lectins exposed to UV, and the number of released DNA barcodes were counted by next-generation sequencing to obtain a signal for each lectin bound to the microbiota. In parallel, the bacterial composition of the gut microbiota was analyzed by 16S rRNA gene sequencing. Finally, we performed a lectin pull-down experiment followed by 16S rRNA gene sequencing to identify lectin-reactive bacteria. Results: The evaluation of cultured gram-positive (Deinococcus radiodurans) and gram-negative (Escherichia coli) bacteria showed significantly distinct glycan profiles between these bacteria, which were selected and further analyzed by flow cytometry. The results of flow cytometry agreed well with those obtained by Glycan-seq, indicating that Glycan-seq can be used for bacterial glycomic analysis. We thus applied Glycan-seq to comparatively analyze the glycomes of young and old mice gut microbiotas. The glycomes of the young and old microbiotas had significantly distinct glycan profiles, which reflect the different bacterial compositions of young and old gut microbiotas based on 16S rRNA gene sequencing. Therefore, the difference in the glycomic profiles between young and old microbiotas may be due to their differing bacterial compositions. α2-6Sia-binders bound specifically to the young microbiota. Lectin pull-down followed by 16S rRNA gene sequencing of the young microbiota identified Lactobacillaceae as the most abundant bacterial family with glycans reacting with α2-6Sia-binders. Conclusion: The Glycan-seq system can, without any prior culturing and fluorescence labeling, reveal the glycomic profile of the intact bacterial gut microbiota. A combination of lectin pull-down and 16S rRNA gene sequencing can identify lectin-reactive bacteria.


Sign in / Sign up

Export Citation Format

Share Document