scholarly journals The Gut Microbial Community of Antarctic Fish Detected by 16S rRNA Gene Sequence Analysis

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Song ◽  
Lingzhi Li ◽  
Hongliang Huang ◽  
Keji Jiang ◽  
Fengying Zhang ◽  
...  

Intestinal bacterial communities are highly relevant to the digestion, nutrition, growth, reproduction, and a range of fitness in fish, but little is known about the gut microbial community in Antarctic fish. In this study, the composition of intestinal microbial community in four species of Antarctic fish was detected based on 16S rRNA gene sequencing. As a result, 1 004 639 sequences were obtained from 13 samples identified into 36 phyla and 804 genera, in which Proteobacteria, Actinobacteria, Firmicutes, Thermi, and Bacteroidetes were the dominant phyla, and Rhodococcus, Thermus, Acinetobacter, Propionibacterium, Streptococcus, and Mycoplasma were the dominant genera. The number of common OTUs (operational taxonomic units) varied from 346 to 768, while unique OTUs varied from 84 to 694 in the four species of Antarctic fish. Moreover, intestinal bacterial communities in individuals of each species were not really similar, and those in the four species were not absolutely different, suggesting that bacterial communities might influence the physiological characteristics of Antarctic fish, and the common bacterial communities might contribute to the fish survival ability in extreme Antarctic environment, while the different ones were related to the living habits. All of these results could offer certain information for the future study of Antarctic fish physiological characteristics.

2019 ◽  
Author(s):  
Jin Gyu Choi ◽  
Eugene Huh ◽  
Namkwon Kim ◽  
Dong-Hyun Kim ◽  
Myung Sook Oh

AbstractRecently, there has been a rapid increase in studies on the relationship between brain diseases and gut microbiota, and clinical evidence on gut microbial changes in Parkinson’s disease (PD) has accumulated. 6-hydroxydopamine (6-OHDA) is a widely used neurotoxin that leads to PD pathogenesis, but whether the alterations of gut microbial community in 6-OHDA-treated mice has not been investigated. Here we performed the 16S rRNA gene sequencing to analyze changes in gut microbial community of mice. We found that there were no significant changes in species richness and its diversity in the 6-OHDA-lesioned mice. The relative abundance ofLactobacillus gasseriandL. reuteriprobiotic species in feces of 6-OHDA-lesioned mice was significantly decreased compared with those of sham-operated mice, while the commensal bacteriumBacteroides acidifaciensin 6-OHDA-treated mice was remarkably higher than sham-operated mice. These results provides a baseline for understanding the microbial communities of 6-OHDA-induced PD model to investigate the role of gut microbiota in the pathogenesis of PD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhou Jiang ◽  
Ping Li ◽  
Yanhong Wang ◽  
Han Liu ◽  
Dazhun Wei ◽  
...  

Abstract Microbial metabolisms of arsenic, iron, sulfur, nitrogen and organic matter play important roles in arsenic mobilization in aquifer. In this study, microbial community composition and functional potentials in a high arsenic groundwater were investigated using integrated techniques of RNA- and DNA-based 16S rRNA gene sequencing, metagenomic sequencing and functional gene arrays. 16S rRNA gene sequencing showed the sample was dominated by members of Proteobacteria (62.3–75.2%), such as genera of Simplicispira (5.7–6.7%), Pseudomonas (3.3–5.7%), Ferribacterium (1.6–4.4%), Solimonas (1.8–3.2%), Geobacter (0.8–2.2%) and Sediminibacterium (0.6–2.4%). Functional potential analyses indicated that organics degradation, assimilatory sulfate reduction, As-resistant pathway, iron reduction, ammonification, nitrogen fixation, denitrification and dissimilatory nitrate reduction to ammonia were prevalent. The composition and function of microbial community and reconstructed genome bins suggest that high level of arsenite in the groundwater may be attributed to arsenate release from iron oxides reductive dissolution by the iron-reducing bacteria, and subsequent arsenate reduction by ammonia-producing bacteria featuring ars operon. This study highlights the relationship between biogeochemical cycling of arsenic and nitrogen in groundwater, which potentially occur in other aquifers with high levels of ammonia and arsenic.


2021 ◽  
Author(s):  
Eduardo Franco-Frías ◽  
Victor Mercado-Guajardo ◽  
Angel Merino-Mascorro ◽  
Janeth Pérez-Garza ◽  
Norma Heredia ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 88
Author(s):  
María Estrella Alcamán-Arias ◽  
Sebastián Fuentes-Alburquenque ◽  
Pablo Vergara-Barros ◽  
Jerónimo Cifuentes-Anticevic ◽  
Josefa Verdugo ◽  
...  

Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S625-S626
Author(s):  
Seth M Bloom ◽  
Nomfuneko A Mafunda ◽  
Benjamin M Woolston ◽  
Matthew R Hayward ◽  
Josephine F Frempong ◽  
...  

Abstract Background Cervicovaginal microbiota domination by Lactobacillus crispatus is associated with beneficial health outcomes, whereas L. iners dominance has more adverse associations. However bacterial vaginosis (BV) treatment with metronidazole (MTZ) typically leads to domination by L. iners rather than L. crispatus. L. iners differs from other lactobacilli by its inability to grow in MRS media. We hypothesized that exploring this growth difference would identify targets for selective L. iners inhibition. Methods Bacteria were grown anaerobically. Nutrient uptake and metabolism were assessed using UPLC-MS/MS and isotopically labeled substrates. Bacterial genome annotation employed Prodigal, Roary, and EggNOG. Competition experiments with mock mixed communities were analyzed by 16S rRNA gene sequencing. We confirmed result generalizability using a diverse collection of South African and North American strains and genomes. Results Supplementing MRS broth with L-cysteine (Cys) or L-cystine permitted robust L. iners growth, while L. crispatus grew without Cys supplementation. Despite their different growth requirements, neither species could synthesize Cys via canonical pathways. Adding the cystine uptake inhibitors S-methyl-L-cysteine (SMC, Fig 1) or seleno-DL-cystine (SDLC) blocked growth of L. iners but not other lactobacilli, suggesting L. iners lacks mechanisms other lactobacilli use to exploit complex exogenous Cys sources. Notably, cydABCD, an operon with Cys/glutathione transport and redox homeostasis activities, is absent from L. iners but present in non-iners Lactobacillus species. Consistent with possible roles for cydABCD in explaining the observed phenotypes, (1) L. iners failed to take up exogenous glutathione and (2) supplementing MRS with reducing agents permitted L. iners growth, which could be blocked by SMC or SDLC. In growth competitions testing L. iners and L. crispatus within mock BV-like communities, SMC plus MTZ outperformed MTZ alone in promoting L. crispatus dominance (Figs 2&3). Figure 1: S-methyl-L-cysteine (SMC) selectively blocks growth of L. iners but not other cervicovaginal Lactobacillus species in cysteine-supplemented MRS broth. Growth was measured by optical density and inhibition calculated relative to Cys-supplemented no-inhibitor control during exponential growth. Values displayed are median (+/- maximum/minimum) for 3 replicates from a single experiment. In all panels, representative data are shown from 1 of >=2 independent experiments for each bacterial strain and media condition. Results are representative of multiple strains for L. iners (n = 16), L. crispatus (n = 7), and L. jensenii (n = 2). Figure 2: Relative abundance of L. crispatus, L. iners, or various BV-associated bacteria in mock bacterial communities grown in rich, non-selective media with or without metronidazole (MTZ) and/or SMC. Relative abundance was determined by bacterial 16S rRNA gene sequencing. Data are shown for three representative mock communities with 5 replicates per media condition. Figure 3: Ratio of L. crispatus to other species in the mock bacterial communities depicted in Figure 2. Statistical significance determined via 1-way ANOVA of log10-transformed ratios with post-hoc Tukey test; selected pairwise comparisons are shown (***, p < 0.001). Conclusion L. iners has unique requirements for exogenous cysteine/cystine or a reduced environment for growth. Targeting cystine uptake to inhibit L. iners is a potential strategy for shifting cervicovaginal microbiota towards L. crispatus-dominant communities. Disclosures Douglas S. Kwon, MD, PhD, Day Zero Diagnostics (Consultant, Shareholder, Other Financial or Material Support, co-founder)


2021 ◽  
Vol 10 (31) ◽  
Author(s):  
Seongsik Park ◽  
Hee-Eun Woo ◽  
Jong-Oh Kim ◽  
In-Cheol Lee ◽  
Seokjin Yoon ◽  
...  

Several oyster farms are concentrated in Geoje-Hansan Bay, Republic of Korea, and there is concern about marine pollution. Hence, we monitored the sediment at this site for a year using 16S rRNA gene sequencing. The predominant phyla were Proteobacteria (69.9 to 79.1%) and Bacteroidetes (8.2 to 10.6%) in all seasons.


Sign in / Sign up

Export Citation Format

Share Document