scholarly journals Personality modulates brain responses to emotion in music: Comparing whole-brain and regions-of-variance approaches

2019 ◽  
Author(s):  
Kendra Oudyk ◽  
Iballa Burunat ◽  
Elvira Brattico ◽  
Petri Toiviainen

AbstractWhether and how personality traits explain the individual variance in neural responses to emotion in music remains unclear. The sparse studies on this topic report inconsistent findings. The present study extends previous work using regions of variance (ROVs) as regions of interest, compared with whole-brain analysis. Fifty-five subjects listened to happy, sad, and fearful music during functional Magnetic Resonance Imaging. Personality was measured with the Big Five Questionnaire. Results confirmed previous observations of Neuroticism being positively related to activation during sad music, in the left inferior parietal lobe. In an exploratory analysis, Openness was positively related to activation during Happy music in an extended cluster in auditory areas, primarily including portions of the left Heschl’s gyrus, superior and middle temporal gyri, supramarginal gyrus, and Rolandic operculum. In the whole-brain analysis, similar results were found for Neuroticism but not for Openness. In turn, we did not replicate previous findings of Extraversion associated to activity during happy music, nor Neuroticism during fearful music. These results support a trait-congruent link between personality and emotion-elicited brain activity, and further our understanding of the action-observation network during emotional music listening. This study also indicates the usefulness of the ROV method in individual-differences research.

2020 ◽  
pp. 59-81
Author(s):  
Michela Balconi ◽  
Giulia Fronda

Non-verbal communication is a joint action defined by the use of different gestures’ types. The present research aimed to investigate the electrophysiological (EEG) correlates during the observation of affective, social and informative gestures in non-verbal communication between encoder and decoder. Moreover, the hyperscanning paradigm allows investigating the individuals’ inter-brain connectivity. Regarding gestures’ type, the study’s results showed a decrease of alpha (increased brain activity), and an increase of delta and theta brain responsiveness and inter-brain connectivity for affective and social gestures in frontal and posterior areas for informative ones. Concerning gestures’ valence, an increase of left frontal theta activity and inter-brain connectivity was observed. Finally, about the inter-agents’ role, the same brain responses and inter-brain connectivity patterns emerged both in encoder and decoder. This study allows discovering neural responses underlying gestures’ type and valence during action observation, highlighting the validity of hyperscanning to investigate inter-brain connectivity mechanisms.


2021 ◽  
Vol 11 (11) ◽  
pp. 1382
Author(s):  
Leopold Kislinger

I have reviewed studies on neural responses to pictured actions in the action observation network (AON) and the cognitive functions of these responses. Based on this review, I have analyzed the specific representational characteristics of action photographs. There has been consensus that AON responses provide viewers with knowledge of observed or pictured actions, but there has been controversy about the properties of this knowledge. Is this knowledge causally provided by AON activities or is it dependent on conceptual processing? What elements of actions does it refer to, and how generalized or specific is it? The answers to these questions have come from studies that used transcranial magnetic stimulation (TMS) to stimulate motor or somatosensory cortices. In conjunction with electromyography (EMG), TMS allows researchers to examine changes of the excitability in the corticospinal tract and muscles of people viewing pictured actions. The timing of these changes and muscle specificity enable inferences to be drawn about the cognitive products of processing pictured actions in the AON. Based on a review of studies using TMS and other neuroscience methods, I have proposed a novel hypothetical account that describes the characteristics of action photographs that make them effective cues to social perception. This account includes predictions that can be tested experimentally.


Author(s):  
Gloria Pizzamiglio ◽  
Zuo Zhang ◽  
James Kolasinski ◽  
Jane M. Riddoch ◽  
Richard E. Passingham ◽  
...  

2013 ◽  
Vol 35 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Miyuki Tamura ◽  
Yoshiya Moriguchi ◽  
Shigekazu Higuchi ◽  
Akiko Hida ◽  
Minori Enomoto ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 64-80 ◽  
Author(s):  
Daniel J. Shaw ◽  
Marie-Helene Grosbras ◽  
Gabriel Leonard ◽  
G. Bruce Pike ◽  
Tomáš Paus

2011 ◽  
Vol 22 (3) ◽  
pp. 668-679 ◽  
Author(s):  
Luca Turella ◽  
Federico Tubaldi ◽  
Michael Erb ◽  
Wolfgang Grodd ◽  
Umberto Castiello

Author(s):  
Davide Albertini ◽  
Marco Lanzilotto ◽  
Monica Maranesi ◽  
Luca Bonini

The neural processing of others' observed actions recruits a large network of brain regions (the action observation network, AON), in which frontal motor areas are thought to play a crucial role. Since the discovery of mirror neurons (MNs) in the ventral premotor cortex, it has been assumed that their activation was conditional upon the presentation of biological rather than nonbiological motion stimuli, supporting a form of direct visuomotor matching. Nonetheless, nonbiological observed movements have rarely been used as control stimuli to evaluate visual specificity, thereby leaving the issue of similarity among neural codes for executed actions and biological or nonbiological observed movements unresolved. Here, we addressed this issue by recording from two nodes of the AON that are attracting increasing interest, namely the ventro-rostral part of the dorsal premotor area F2 and the mesial pre-supplementary motor area F6 of macaques while they 1) executed a reaching-grasping task, 2) observed an experimenter performing the task, and 3) observed a nonbiological effector moving in the same context. Our findings revealed stronger neuronal responses to the observation of biological than nonbiological movement, but biological and nonbiological visual stimuli produced highly similar neural dynamics and relied on largely shared neural codes, which in turn remarkably differed from those associated with executed actions. These results indicate that, in highly familiar contexts, visuo-motor remapping processes in premotor areas hosting MNs are more complex and flexible than predicted by a direct visuomotor matching hypothesis.


2021 ◽  
Author(s):  
Maria J. Ribeiro ◽  
Miguel Castelo-Branco

In humans, ageing is characterized by decreased brain signal variability and increased behavioural variability. To understand how reduced brain variability segregates with increased behavioural variability, we investigated the association between reaction time variability, evoked brain responses and ongoing brain signal dynamics, in young (N = 36) and older adults (N = 39). We studied the electroencephalogram (EEG) and pupil size fluctuations to characterize the cortical and arousal responses elicited by a cued go/no-go task. Evoked responses were strongly modulated by slow (< 2 Hz) fluctuations of the ongoing signals, which presented reduced power in the older participants. Although variability of the evoked responses was lower in the older participants, once we adjusted for the effect of the ongoing signal fluctuations, evoked responses were equally variable in both groups. Moreover, the modulation of the evoked responses caused by the ongoing signal fluctuations had no impact on reaction time, thereby explaining why although ongoing brain signal variability is decreased in older individuals, behavioural variability is not. Finally, we showed that adjusting for the effect of the ongoing signal was critical to unmask the link between neural responses and behaviour.


2009 ◽  
Vol 20 (2) ◽  
pp. 486-491 ◽  
Author(s):  
A. A. Sokolov ◽  
A. Gharabaghi ◽  
M. S. Tatagiba ◽  
M. Pavlova

Sign in / Sign up

Export Citation Format

Share Document