scholarly journals Gesture in hyperscanning during observation. Inter-brain connectivity

2020 ◽  
pp. 59-81
Author(s):  
Michela Balconi ◽  
Giulia Fronda

Non-verbal communication is a joint action defined by the use of different gestures’ types. The present research aimed to investigate the electrophysiological (EEG) correlates during the observation of affective, social and informative gestures in non-verbal communication between encoder and decoder. Moreover, the hyperscanning paradigm allows investigating the individuals’ inter-brain connectivity. Regarding gestures’ type, the study’s results showed a decrease of alpha (increased brain activity), and an increase of delta and theta brain responsiveness and inter-brain connectivity for affective and social gestures in frontal and posterior areas for informative ones. Concerning gestures’ valence, an increase of left frontal theta activity and inter-brain connectivity was observed. Finally, about the inter-agents’ role, the same brain responses and inter-brain connectivity patterns emerged both in encoder and decoder. This study allows discovering neural responses underlying gestures’ type and valence during action observation, highlighting the validity of hyperscanning to investigate inter-brain connectivity mechanisms.

2019 ◽  
Author(s):  
Kendra Oudyk ◽  
Iballa Burunat ◽  
Elvira Brattico ◽  
Petri Toiviainen

AbstractWhether and how personality traits explain the individual variance in neural responses to emotion in music remains unclear. The sparse studies on this topic report inconsistent findings. The present study extends previous work using regions of variance (ROVs) as regions of interest, compared with whole-brain analysis. Fifty-five subjects listened to happy, sad, and fearful music during functional Magnetic Resonance Imaging. Personality was measured with the Big Five Questionnaire. Results confirmed previous observations of Neuroticism being positively related to activation during sad music, in the left inferior parietal lobe. In an exploratory analysis, Openness was positively related to activation during Happy music in an extended cluster in auditory areas, primarily including portions of the left Heschl’s gyrus, superior and middle temporal gyri, supramarginal gyrus, and Rolandic operculum. In the whole-brain analysis, similar results were found for Neuroticism but not for Openness. In turn, we did not replicate previous findings of Extraversion associated to activity during happy music, nor Neuroticism during fearful music. These results support a trait-congruent link between personality and emotion-elicited brain activity, and further our understanding of the action-observation network during emotional music listening. This study also indicates the usefulness of the ROV method in individual-differences research.


2021 ◽  
pp. 79-105
Author(s):  
Giulia Fronda

Non-verbal communication involves di rent channels, as gestures, to communicate different information. The present study aims investigating the electrophysiological (EEG) correlates underlying the use of affective, social, and informative gestures during gesture observation by an encoder (who observed to reproduce the gestures successively) and decoder (who simply observed the gestures). Mirroring mechanisms were considered for a gesture observation task. Results showed an increase of frontal alpha, delta, and theta brain responsiveness and intra-brain connectivity for affective and social gestures. and of posterior (temporo-parietal) alpha activity and alpha and delta intra-brain connectivity for informative ones. Concerning inter-agents' role, similar responses were found for all gestures. Regarding gesture valence, an increase of delta and theta activity was observed for positive gestures on the left cerebral side. This study, therefore, revealed the function of gestures' type and valence in influencing individuals' brain activity, showing the presence of mirroring mechanisms underlying gesture observation.


2021 ◽  
Author(s):  
Maria J. Ribeiro ◽  
Miguel Castelo-Branco

In humans, ageing is characterized by decreased brain signal variability and increased behavioural variability. To understand how reduced brain variability segregates with increased behavioural variability, we investigated the association between reaction time variability, evoked brain responses and ongoing brain signal dynamics, in young (N = 36) and older adults (N = 39). We studied the electroencephalogram (EEG) and pupil size fluctuations to characterize the cortical and arousal responses elicited by a cued go/no-go task. Evoked responses were strongly modulated by slow (< 2 Hz) fluctuations of the ongoing signals, which presented reduced power in the older participants. Although variability of the evoked responses was lower in the older participants, once we adjusted for the effect of the ongoing signal fluctuations, evoked responses were equally variable in both groups. Moreover, the modulation of the evoked responses caused by the ongoing signal fluctuations had no impact on reaction time, thereby explaining why although ongoing brain signal variability is decreased in older individuals, behavioural variability is not. Finally, we showed that adjusting for the effect of the ongoing signal was critical to unmask the link between neural responses and behaviour.


2020 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Michela Balconi ◽  
Giulia Fronda

Communication can be considered as a joint action that involves two or more individuals transmitting different information. In particular, non-verbal communication involves body movements used to communicate different information, characterized by the use of specific gestures. The present study aims to investigate the electrophysiological (EEG) correlates underlying the use of affective, social, and informative gestures during a non-verbal interaction between an encoder and decoder. From the results of the single brain and inter-brain analyses, an increase of frontal alpha, delta, and theta brain responsiveness and inter-brain connectivity emerged for affective and social gestures; while, for informative gestures, an increase of parietal alpha brain responsiveness and alpha, delta, and theta inter-brain connectivity was observed. Regarding the inter-agents’ role, an increase of frontal alpha activity was observed in the encoder compared to the decoder for social and affective gestures. Finally, regarding gesture valence, an increase of theta brain responsiveness and theta and beta inter-brain connectivity was observed for positive gestures on the left side compared to the right one. This study, therefore, revealed the function of the gesture type and valence in influencing individuals’ brain responsiveness and inter-brain connectivity, showing the presence of resonance mechanisms underlying gesture execution and observation.


Author(s):  
Anaël Ayrolles ◽  
Florence Brun ◽  
Phoebe Chen ◽  
Amir Djalovski ◽  
Yann Beauxis ◽  
...  

Abstract The bulk of social neuroscience takes a ‘stimulus-brain’ approach, typically comparing brain responses to different types of social stimuli, but most of the time in the absence of direct social interaction. Over the last two decades, a growing number of researchers have adopted a ‘brain-to-brain’ approach, exploring similarities between brain patterns across participants as a novel way to gain insight into the social brain. This methodological shift has facilitated the introduction of naturalistic social stimuli into the study design (e.g. movies) and, crucially, has spurred the development of new tools to directly study social interaction, both in controlled experimental settings and in more ecologically valid environments. Specifically, ‘hyperscanning’ setups, which allow the simultaneous recording of brain activity from two or more individuals during social tasks, has gained popularity in recent years. However, currently, there is no agreed-upon approach to carry out such ‘inter-brain connectivity analysis’, resulting in a scattered landscape of analysis techniques. To accommodate a growing demand to standardize analysis approaches in this fast-growing research field, we have developed Hyperscanning Python Pipeline, a comprehensive and easy open-source software package that allows (social) neuroscientists to carry-out and to interpret inter-brain connectivity analyses.


2020 ◽  
Author(s):  
Anaël Ayrolles ◽  
Florence Brun ◽  
Phoebe Chen ◽  
Amir Djalovski ◽  
Yann Beauxis ◽  
...  

The bulk of social neuroscience takes a ‘stimulus-brain’ approach, typically comparing brain responses to different types of social stimuli, but most of the time in the absence of true social interaction. Over the last two decades, a growing number of researchers have adopted a ‘brain-to-brain’ approach, exploring similarities between brain patterns across participants as a novel way to gain insight into the social brain. This methodological shift has facilitated the introduction of naturalistic social stimuli into the study design (e.g., movies), and, crucially, has spurred the development of new tools to directly study social interaction, both in controlled experimental settings and in more ecologically valid environments. Specifically, hyperscanning setups, which allow the simultaneous recording of brain activity from two or more individuals during social tasks has gained popularity in recent years. However, currently there is no agreed-upon approach to carry out such inter-brain connectivity analysis, resulting in a scattered landscape of analysis techniques. To accommodate a growing demand to standardize analysis approaches in this fast-growing research field, we have developed HyPyP, a comprehensive and easy open-source software package that allows (social) neuroscientists to carry-out and to interpret inter-brain connectivity analyses.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2020 ◽  
Vol 276 ◽  
pp. 804-814 ◽  
Author(s):  
Xiaoqin Wang ◽  
Yafei Tan ◽  
Omer Van den Bergh ◽  
Andreas von Leupoldt ◽  
Jiang Qiu

2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2018 ◽  
Vol 314 (5) ◽  
pp. E522-E529 ◽  
Author(s):  
Renata Belfort-DeAguiar ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Sarita Naik ◽  
Christian Schmidt ◽  
...  

Blood glucose levels influence brain regulation of food intake. This study assessed the effect of mild physiological hyperglycemia on brain response to food cues in individuals with obesity (OB) versus normal weight individuals (NW). Brain responses in 10 OB and 10 NW nondiabetic healthy adults [body mass index: 34 (3) vs. 23 (2) kg/m2, means (SD), P < 0.0001] were measured with functional MRI (blood oxygen level-dependent contrast) in combination with a two-step normoglycemic-hyperglycemic clamp. Participants were shown food and nonfood images during normoglycemia (~95 mg/dl) and hyperglycemia (~130 mg/dl). Plasma glucose levels were comparable in both groups during the two-step clamp ( P = not significant). Insulin and leptin levels were higher in the OB group compared with NW, whereas ghrelin levels were lower (all P < 0.05). During hyperglycemia, insula activity showed a group-by-glucose level effect. When compared with normoglycemia, hyperglycemia resulted in decreased activity in the hypothalamus and putamen in response to food images ( P < 0.001) in the NW group, whereas the OB group exhibited increased activity in insula, putamen, and anterior and dorsolateral prefrontal cortex (aPFC/dlPFC; P < 0.001). These data suggest that OB, compared with NW, appears to have disruption of brain responses to food cues during hyperglycemia, with reduced insula response in NW but increased insula response in OB, an area involved in food perception and interoception. In a post hoc analysis, brain activity in obesity appears to be associated with dysregulated motivation (striatum) and inappropriate self-control (aPFC/dlPFC) to food cues during hyperglycemia. Hyperstimulation for food and insensitivity to internal homeostatic signals may favor food consumption to possibly play a role in the pathogenesis of obesity.


Sign in / Sign up

Export Citation Format

Share Document