scholarly journals Hydrogel platform for in vitro three-dimensional assembly of human stem cell-derived β cells and endothelial cells

2019 ◽  
Author(s):  
Punn Augsornworawat ◽  
Leonardo Velazco-Cruz ◽  
Jiwon Song ◽  
Jeffrey R. Millman

AbstractDifferentiation of stem cells into functional replacement cells and tissues is a major goal of the regenerative medicine field. However, one limitation has been organization of differentiated cells into multi-cellular, three-dimensional assemblies. The islets of Langerhans contain many endocrine and non-endocrine cell types, such as insulin-producing β cells and endothelial cells. Transplantation of exogenous islets into diabetic patients can serve as a cell replacement therapy, replacing the need for patients to inject themselves with insulin, but the number of available islets from cadaveric donors is low. We have developed a strategy of assembling human embryonic stem cell-derived β cells with endothelial cells into three-dimensional aggregates on a hydrogel. The resulting islet organoids express β cell markers and are functional, capable of undergoing glucose-stimulated insulin secretion. These results provide a platform for evaluating the effects of the islet tissue microenvironment on human embryonic stem cell-derived β cells and other islet endocrine cells to develop tissue engineered islets.


2017 ◽  
Vol 36 (6) ◽  
pp. 684-693 ◽  
Author(s):  
Jennifer Pasquier ◽  
Renuka Gupta ◽  
Damien Rioult ◽  
Jessica Hoarau-Véchot ◽  
Raphael Courjaret ◽  
...  




2005 ◽  
Vol 92 (5) ◽  
pp. 1265-1276 ◽  
Author(s):  
Chang-Hwan Park ◽  
Yang-Ki Minn ◽  
Ji-Yeon Lee ◽  
Dong Ho Choi ◽  
Mi-Yoon Chang ◽  
...  


2003 ◽  
Vol 285 (6) ◽  
pp. H2355-H2363 ◽  
Author(s):  
Mirit Snir ◽  
Izhak Kehat ◽  
Amira Gepstein ◽  
Raymond Coleman ◽  
Joseph Itskovitz-Eldor ◽  
...  

Assessment of early ultrastructural development and cell-cycle regulation in human cardiac tissue is significantly hampered by the lack of a suitable in vitro model. Here we describe the possible utilization of human embryonic stem cell (ES) lines for investigation of these processes. With the use of the embryoid body (EB) differentiation system, human ES cell-derived cardiomyocytes at different developmental stages were isolated and their histomorphometric, ultrastructural, and proliferative properties were characterized. Histomorphometric analysis revealed an increase in cell length, area, and length-to-width ratio in late-stage EBs (>35 days) compared with early (10–21 days) and intermediate (21–35 days) stages. This was coupled with a progressive ultrastructural development from an irregular myofibrillar distribution to an organized sarcomeric pattern. Cardiomyocyte proliferation, assessed by double labeling with cardiac-specific antibodies and either [3H]thymidine incorporation or Ki-67 immunolabeling, demonstrated a gradual withdrawal from cell cycle. Hence, the percentage of positively stained nuclei in early-stage cardiomyocytes ([3H]thymidine: 60 ± 10%, Ki-67: 54 ± 23%) decreased to 36 ± 7% and 9 ± 16% in intermediate-stage EBs and to <1% in late-stage cardiomyocytes. In conclusion, a reproducible temporal pattern of early cardiomyocyte proliferation, cell-cycle withdrawal, and ultrastructural maturation was noted in this model. Establishment of this unique in vitro surrogate system may allow to examine the molecular mechanisms underlying these processes and to assess interventions aiming to modify these properties. Moreover, the detailed characterization of the ES cell-derived cardiomyocyte may be crucial for the development of future cell replacement strategies aiming to regenerate functional myocardium.





PLoS ONE ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. e7040 ◽  
Author(s):  
Jin Yu ◽  
Ngan F. Huang ◽  
Kitchener D. Wilson ◽  
Jeffrey B. Velotta ◽  
Mei Huang ◽  
...  


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3858-3858 ◽  
Author(s):  
Ou Li ◽  
Ariane Tormin ◽  
Jan Claas Brune ◽  
Berit Sundberg ◽  
Johan Hyllner ◽  
...  

Abstract Abstract 3858 Mesenchymal stroma cells (MSC) have a high potential for novel cell therapy approaches in clinical transplantation due to their intriguing properties, e.g. high proliferation and differentiation capacity, stromal support and immune-modulation. Commonly, bone marrow-derived MSC (BM-MSC) are used for clinical MSC cell therapies. However, BM-derived MSC have a restricted proliferative capacity and cultured BM-MSC are heterogeneous and thus difficult to standardize. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSC) have recently been developed and might represent an alternative and unlimited source of hMSCs. We therefore aimed to characterize human ES-cell-derived MSC, i.e. the hES-MSC line hES-MP002.5 (Cellartis) and compare its properties with normal human bone marrow (BM) derived MSC. We found that hES-MP cells have lower yet reasonable CFU-F capacity when compared with BM-MSC (6+3 vs 25+1 CFU-F per 100 cells). hES-MP cells showed similar immunophenotypic properties compared with BM-MSC (flow cytometry): Both cell types were positive for CD105, CD73, CD166, HLA Class I, CD44, CD146 and CD90, and cells were negative for surface markers such as CD45, CD34, CD14, CD31, CD19, and HLA-DR. hES-MP, like BM-MSC, could be differentiated into adipocytes, osteoblasts and chondrocytes upon induction in vitro. In order to test whether MSC were capable of homing to the bone marrow after intravenous injection, hES-MP and BM-MSC were markerd with GFP, and sorted GFP-positive cells were injected intravenously into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. GFP-positive cells were not detected in the bone marrow 24 hours after injection, neither when hES-MP cells were injected, nor - and as expected - when cultured BM-MSC were used. Intra-femoral transplantation into NSG mice using GFP expressing hES-MP and BM-MSC on the other hand demonstrated successful long-term engraftment (8 weeks) for both cell types. Morphology and intra-femoral localization of hES-MP were similar compared to BM-MSC. LTC-IC and co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP, like BM-MSC, possess potent stroma support function both in vitro and in vivo. However, hES-MP showed no or only little activity in mixed lymphocyte cultures and PHA lymphocyte stimulation assays. In summary, our data demonstrate that MSC derived from hES cells have biological properties and potent stroma functions similar to conventional BM-MSC. Thus, ES-cell derived MSC might be an attractive and reliable alternative and unlimited source for obtaining MSC for clinical cell therapy. However, hES-MP probably have no or only little immuno-modulative capacity, which may limit their potential clinical use. Disclosures: Hyllner: Cellartis AB: Employment.



Sign in / Sign up

Export Citation Format

Share Document