scholarly journals Prospective Isolation of Chondroprogenitors from Human iPSCs Based on Cell Surface Markers Identified using a CRISPR-Cas9-Generated Reporter

2019 ◽  
Author(s):  
Amanda Dicks ◽  
Chia-Lung Wu ◽  
Nancy Steward ◽  
Shaunak S. Adkar ◽  
Charles A. Gersbach ◽  
...  

SUMMARYArticular cartilage shows little or no capacity for intrinsic repair, generating a critical need for regenerative therapies for joint injuries and diseases such as osteoarthritis. Human induced pluripotent stem cells (hiPSCs) offer a promising cell source for cartilage tissue engineering andin vitrohuman disease modeling; however, heterogeneity and off-target differentiation remain a challenge. We used a CRISPR-Cas9-editedCOL2A1-GFPknock-in reporter hiPSC line, coupled with a surface marker screen, to identify a novel chondroprogenitor population expressing CD146, CD166, and PDGFRβ, but not CD45. Under chondrogenic culture conditions, these triple positive chondroprogenitor cells demonstrated decreased heterogeneity as measured by single cell RNA sequencing, as well as more robust and homogenous matrix production with significantly higher chondrogenic gene expression. Overall, this study has identified a unique hiPSC-derived subpopulation of chondroprogenitors that are CD146+/CD166+/PDGFRβ+/CD45-and exhibit high chondrogenic potential, providing a purified cell source for cartilage tissue engineering or disease modeling studies.

Biomaterials ◽  
2011 ◽  
Vol 32 (25) ◽  
pp. 5773-5781 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Quynhhoa T. Nguyen ◽  
Albert C. Chen ◽  
David L. Kaplan ◽  
Robert L. Sah ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Focaroli ◽  
Gabriella Teti ◽  
Viviana Salvatore ◽  
Isabella Orienti ◽  
Mirella Falconi

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes thein vitrobehavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


Author(s):  
Ana Belén Bonhome-Espinosa ◽  
Fernando Campos ◽  
Daniel Durand-Herrera ◽  
José Darío Sánchez-López ◽  
Sébastien Schaub ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Azizeh Rahmani Del Bakhshayesh ◽  
Nahideh Asadi ◽  
Alireza Alihemmati ◽  
Hamid Tayefi Nasrabadi ◽  
Azadeh Montaseri ◽  
...  

Abstract Tissue engineering, as an interdisciplinary approach, is seeking to create tissues with optimal performance for clinical applications. Various factors, including cells, biomaterials, cell or tissue culture conditions and signaling molecules such as growth factors, play a vital role in the engineering of tissues. In vivo microenvironment of cells imposes complex and specific stimuli on the cells, and has a direct effect on cellular behavior, including proliferation, differentiation and extracellular matrix (ECM) assembly. Therefore, to create appropriate tissues, the conditions of the natural environment around the cells should be well imitated. Therefore, researchers are trying to develop biomimetic scaffolds that can produce appropriate cellular responses. To achieve this, we need to know enough about biomimetic materials. Scaffolds made of biomaterials in musculoskeletal tissue engineering should also be multifunctional in order to be able to function better in mechanical properties, cell signaling and cell adhesion. Multiple combinations of different biomaterials are used to improve above-mentioned properties of various biomaterials and to better imitate the natural features of musculoskeletal tissue in the culture medium. These improvements ultimately lead to the creation of replacement structures in the musculoskeletal system, which are closer to natural tissues in terms of appearance and function. The present review article is focused on biocompatible and biomimetic materials, which are used in musculoskeletal tissue engineering, in particular, cartilage tissue engineering.


2007 ◽  
Vol 15 ◽  
pp. B81
Author(s):  
G.M. Salzmann ◽  
P. Schmitz ◽  
M. Anton ◽  
M. Stoddart ◽  
S. Grad ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shuai Qin ◽  
Shuai Zheng ◽  
Bing Qi ◽  
Rui Guo ◽  
Guanghui Hou

The lack of donor corneal tissue or the immunological rejection remains a challenge for individuals with limbal stem cell deficiency (LSCD) who are treated with keratoplasty. Numerous lenticules which were extracted by small incision lenticule extraction (SMILE) appear to be useful materials for keratoplasty. In order to reduce the incidence of allograft rejection, lenticules would be decellularized. Lenticules which were treated with liquid nitrogen and nucleases had no cellular and nuclear materials remained. Human induced pluripotent stem cells (iPSCs) can be generated from the patient who requires keratoplasty, offering an autologous alternative and eliminating the risk of graft rejection. We found that BMP-4, RA, N-2 supplement, hEGF, B27, decellularized human stromal lenticules, conditioned medium, or induction medium promoted the differentiation of human iPSCs with high purity. The results showed that human iPSCs cultured for 4 days in differentiation medium A, 14 days in condition medium, and 1 week in induction medium on decellularized human stromal lenticules developed markedly higher expression of the markers P63, CK3, and CK12 than did those in the other methods. The level of gene expression of the epithelial and pluripotency markers and analysis by scanning electron microscopy and immunohistochemistry also showed successful differentiation. After inducing differentiation in vitro, corneal epithelial-like cells were induced. In the study, we investigated the possibility of a new resource for corneal tissue engineering.


2006 ◽  
Vol 49 ◽  
pp. 189-196
Author(s):  
Soo Hyun Kim ◽  
Young Mee Jung ◽  
Sang Heon Kim ◽  
Young Ha Kim ◽  
Jun Xie ◽  
...  

To engineer cartilaginous constructs with a mechano-active scaffold and dynamic compression was performed for effective cartilage tissue engineering. Mechano-active scaffolds were fabricated from very elastic poly(L-lactide-co-ε-carprolactone)(5:5). The scaffolds with 85 % porosity and 300~500 μm pore size were prepared by a gel-pressing method. The scaffolds were seeded with chondrocytes and the continuous compressive deformation of 5% strain was applied to cell-polymer constructs with 0.1Hz to evaluate for the effect of dynamic compression for regeneration of cartilage. Also, the chondrocytes-seeded constructs stimulated by the continuous compressive deformation of 5% strain with 0.1Hz for 10 days and 24 days respectively were implanted in nude mice subcutaneously to investigate their biocompatibility and cartilage formation. From biochemical analyses, chondrogenic differentiation was sustained and enhanced significantly and chondrial extracellular matrix was increased through mechanical stimulation. Histological analysis showed that implants stimulated mechanically formed mature and well-developed cartilaginous tissue, as evidenced by chondrocytes within lacunae. Masson’s trichrome and Safranin O staining indicated an abundant accumulation of collagens and GAGs. Also, ECM in constructs was strongly immuno-stained with anti-rabbit collagen type II antibody. Consequently, the periodic application of dynamic compression can improve the quality of cartilaginous tissue formed in vitro and in vivo.


2010 ◽  
Vol 16 (1) ◽  
pp. 343-353 ◽  
Author(s):  
João T. Oliveira ◽  
Tírcia C. Santos ◽  
Luís Martins ◽  
Ricardo Picciochi ◽  
Alexandra P. Marques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document