scholarly journals Giotto, a toolbox for integrative analysis and visualization of spatial expression data

2019 ◽  
Author(s):  
Ruben Dries ◽  
Qian Zhu ◽  
Rui Dong ◽  
Chee-Huat Linus Eng ◽  
Huipeng Li ◽  
...  

AbstractThe rapid development of novel spatial transcriptomic and proteomic technologies has provided new opportunities to investigate the interactions between cells and their native microenvironment. However, effective use of such technologies requires the development of innovative computational tools that are easily accessible and intuitive to use. Here we present Giotto, a comprehensive, flexible, robust, and open-source toolbox for spatial transcriptomic and proteomic data analysis and visualization. The data analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing cell-type distribution, spatially coherent gene expression patterns, and interactions between each cell and its surrounding neighbors. Furthermore, Giotto can also be used in conjunction with external single-cell RNAseq data to infer the spatial enrichment of cell types from data that do not have single-cell resolution. The data visualization module allows users to interactively visualize the gene expression data, analysis outputs, and additional imaging features, thereby providing a user-friendly workspace to explore multiple modalities of information for biological investigation. These two modules can be used iteratively for refined analysis and hypothesis development. We applied Giotto to a wide range of public datasets encompassing diverse technologies and platforms, thereby demonstrating its general applicability for spatial transcriptomic and proteomic data analysis and visualization.

2009 ◽  
Vol 07 (04) ◽  
pp. 645-661 ◽  
Author(s):  
XIN CHEN

There is an increasing interest in clustering time course gene expression data to investigate a wide range of biological processes. However, developing a clustering algorithm ideal for time course gene express data is still challenging. As timing is an important factor in defining true clusters, a clustering algorithm shall explore expression correlations between time points in order to achieve a high clustering accuracy. Moreover, inter-cluster gene relationships are often desired in order to facilitate the computational inference of biological pathways and regulatory networks. In this paper, a new clustering algorithm called CurveSOM is developed to offer both features above. It first presents each gene by a cubic smoothing spline fitted to the time course expression profile, and then groups genes into clusters by applying a self-organizing map-based clustering on the resulting splines. CurveSOM has been tested on three well-studied yeast cell cycle datasets, and compared with four popular programs including Cluster 3.0, GENECLUSTER, MCLUST, and SSClust. The results show that CurveSOM is a very promising tool for the exploratory analysis of time course expression data, as it is not only able to group genes into clusters with high accuracy but also able to find true time-shifted correlations of expression patterns across clusters.


2019 ◽  
Author(s):  
Kyungmin Ahn ◽  
Hironobu Fujiwara

AbstractBackgroundIn single-cell RNA-sequencing (scRNA-seq) data analysis, a number of statistical tools in multivariate data analysis (MDA) have been developed to help analyze the gene expression data. This MDA approach is typically focused on examining discrete genomic units of genes that ignores the dependency between the data components. In this paper, we propose a functional data analysis (FDA) approach on scRNA-seq data whereby we consider each cell as a single function. To avoid a large number of dropouts (zero or zero-closed values) and reduce the high dimensionality of the data, we first perform a principal component analysis (PCA) and assign PCs to be the amplitude of the function. Then we use the index of PCs directly from PCA for the phase components. This approach allows us to apply FDA clustering methods to scRNA-seq data analysis.ResultsTo demonstrate the robustness of our method, we apply several existing FDA clustering algorithms to the gene expression data to improve the accuracy of the classification of the cell types against the conventional clustering methods in MDA. As a result, the FDA clustering algorithms achieve superior accuracy on simulated data as well as real data such as human and mouse scRNA-seq data.ConclusionsThis new statistical technique enhances the classification performance and ultimately improves the understanding of stochastic biological processes. This new framework provides an essentially different scRNA-seq data analytical approach, which can complement conventional MDA methods. It can be truly effective when current MDA methods cannot detect or uncover the hidden functional nature of the gene expression dynamics.


2019 ◽  
Author(s):  
Yiliang Zhang ◽  
Kexuan Liang ◽  
Molei Liu ◽  
Yue Li ◽  
Hao Ge ◽  
...  

AbstractSingle-cell RNA sequencing technologies are widely used in recent years as a powerful tool allowing the observation of gene expression at the resolution of single cells. Two of the major challenges in scRNA-seq data analysis are dropout events and batch effects. The inflation of zero(dropout rate) varies substantially across single cells. Evidence has shown that technical noise, including batch effects, explains a notable proportion of this cell-to-cell variation. To capture biological variation, it is necessary to quantify and remove technical variation. Here, we introduce SCRIBE (Single-Cell Recovery Imputation with Batch Effects), a principled framework that imputes dropout events and corrects batch effects simultaneously. We demonstrate, through real examples, that SCRIBE outperforms existing scRNA-seq data analysis tools in recovering cell-specific gene expression patterns, removing batch effects and retaining biological variation across cells. Our software is freely available online at https://github.com/YiliangTracyZhang/SCRIBE.


2020 ◽  
Author(s):  
Wei Vivian Li ◽  
Yanzeng Li

AbstractA system-level understanding of the regulation and coordination mechanisms of gene expression is essential to understanding the complexity of biological processes in health and disease. With the rapid development of single-cell RNA sequencing technologies, it is now possible to investigate gene interactions in a cell-type-specific manner. Here we propose the scLink method, which uses statistical network modeling to understand the co-expression relationships among genes and to construct sparse gene co-expression networks from single-cell gene expression data. We use both simulation and real data studies to demonstrate the advantages of scLink and its ability to improve single-cell gene network analysis. The source code used in this article is available at https://github.com/Vivianstats/scLink.


2021 ◽  
Author(s):  
Joseph Boen ◽  
Joel P. Wagner ◽  
Noemi Di Nanni

Copy number variations (CNVs) are genomic events where the number of copies of a particular gene varies from cell to cell. Cancer cells are associated with somatic CNV changes resulting in gene amplifications and gene deletions. However, short of single-cell whole-genome sequencing, it is difficult to detect and quantify CNV events in single cells. In contrast, the rapid development of single-cell RNA sequencing (scRNA-seq) technologies has enabled easy acquisition of single-cell gene expression data. In this work, we employ three methods to infer CNV events from scRNA-seq data and provide a statistical comparison of the methods' results. In addition, we combine the analysis of scRNA-seq and inferred CNV data to visualize and determine subpopulations and heterogeneity in tumor cell populations.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruben Dries ◽  
Qian Zhu ◽  
Rui Dong ◽  
Chee-Huat Linus Eng ◽  
Huipeng Li ◽  
...  

AbstractSpatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


Sign in / Sign up

Export Citation Format

Share Document