scholarly journals SCANPY: large-scale single-cell gene expression data analysis

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
F. Alexander Wolf ◽  
Philipp Angerer ◽  
Fabian J. Theis
2017 ◽  
Author(s):  
F. Alexander Wolf ◽  
Philipp Angerer ◽  
Fabian J. Theis

We present Scanpy, a scalable toolkit for analyzing single-cell gene expression data. It includes preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing and simulation of gene regulatory networks. The Python-based implementation efficiently deals with datasets of more than one million cells and enables easy interfacing of advanced machine learning packages. Code is available fromhttps://github.com/theislab/scanpy.


2020 ◽  
Vol 17 (6) ◽  
pp. 621-628 ◽  
Author(s):  
Zhichao Miao ◽  
Pablo Moreno ◽  
Ni Huang ◽  
Irene Papatheodorou ◽  
Alvis Brazma ◽  
...  

2016 ◽  
Author(s):  
Gregory Giecold ◽  
Eugenio Marco ◽  
Lorenzo Trippa ◽  
Guo-Cheng Yuan

Single-cell gene expression data provide invaluable resources for systematic characterization of cellular hierarchy in multi-cellular organisms. However, cell lineage reconstruction is still often associated with significant uncertainty due to technological constraints. Such uncertainties have not been taken into account in current methods. We present ECLAIR, a novel computational method for the statistical inference of cell lineage relationships from single-cell gene expression data. ECLAIR uses an ensemble approach to improve the robustness of lineage predictions, and provides a quantitative estimate of the uncertainty of lineage branchings. We show that the application of ECLAIR to published datasets successfully reconstructs known lineage relationships and significantly improves the robustness of predictions. In conclusion, ECLAIR is a powerful bioinformatics tool for single-cell data analysis. It can be used for robust lineage reconstruction with quantitative estimate of prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document