scholarly journals Recovirus NS1-2 has viroporin activity that induces aberrant cellular calcium signaling to facilitate virus replication

2019 ◽  
Author(s):  
Alicia C. Strtak ◽  
Jacob L. Perry ◽  
Mark N. Sharp ◽  
Alexandra L. Chang-Graham ◽  
Tibor Farkas ◽  
...  

AbstractEnteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca2+) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca2+ homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca2+ signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca2+ homeostasis. We found that TV disrupts increases Ca2+ signaling during infection and increased cytoplasmic Ca2+ levels is important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum (ER), the predominant intracellular Ca2+ store and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca2+ signaling when expressed in mammalian cells, but truncation of the VPD abrogated these functions. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and show that like many other enteric viruses, enteric caliciviruses also exploit host Ca2+ signaling to facilitate their replication.ImportanceTulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and result in >65 billion dollars per year in treatment and healthcare-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cell, enteroid and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are largely still lacking. Here we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated in conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Alicia C. Strtak ◽  
Jacob L. Perry ◽  
Mark N. Sharp ◽  
Alexandra L. Chang-Graham ◽  
Tibor Farkas ◽  
...  

ABSTRACT Enteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca2+) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca2+ homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca2+ signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca2+ homeostasis. We found that TV increases Ca2+ signaling during infection and that increased cytoplasmic Ca2+ levels are important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum, the predominant intracellular Ca2+ store, and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca2+ signaling when expressed in mammalian cells, but truncation of the VPD abrogated these activities. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and support the premise that enteric viruses, including those within Caliciviridae, exploit host Ca2+ signaling to facilitate their replication. IMPORTANCE Tulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and amass >65 billion dollars per year in treatment and health care-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cells, enteroids, and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are still largely lacking. Here, we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated by conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.


2017 ◽  
Vol 7 (4) ◽  
pp. 281-289 ◽  
Author(s):  
David F. Bridges ◽  
Anna Breard ◽  
Alison Lacombe ◽  
Don C. Valentine ◽  
Shravani Tadepalli ◽  
...  

2020 ◽  
Vol 17 ◽  
pp. 234-242 ◽  
Author(s):  
Nutan Sharma ◽  
Samriddhi Arora ◽  
Suman Saurav ◽  
Rajender K Motiani

1997 ◽  
Vol 16 (13) ◽  
pp. 4049-4059 ◽  
Author(s):  
Mary C. Schaad ◽  
Patricia E. Jensen ◽  
James C. Carrington

2006 ◽  
Vol 84 (3-4) ◽  
pp. 403-422 ◽  
Author(s):  
Anant N. Malviya ◽  
Christian Klein

Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca2+-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-γ1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP3 generating system.


2015 ◽  
Vol 88 (7) ◽  
pp. 1180-1186 ◽  
Author(s):  
Noriko Nakamura ◽  
Shinichi Kobayashi ◽  
Hiroko Minagawa ◽  
Tadashi Matsushita ◽  
Wataru Sugiura ◽  
...  

2013 ◽  
Vol 288 (13) ◽  
pp. 9482-9490 ◽  
Author(s):  
Jaiprakash Sharma ◽  
Diptendu Mukherjee ◽  
Sudheendra N. R. Rao ◽  
Soumya Iyengar ◽  
Susarla Krishna Shankar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document