scholarly journals Mitochondrial DNA variation of Leber’s Hereditary Optic Neuropathy (LHON) in Western Siberia

2019 ◽  
Author(s):  
E.B. Starikovskaya ◽  
S.A. Shalaurova ◽  
S.V. Dryomov ◽  
A.M. Nazhmidenova ◽  
N.V. Volodko ◽  
...  

AbstractLeber’s hereditary optic neuropathy (LHON) is a form of disorder caused by pathogenic mutations in a mitochondrial DNA. LHON is maternally inherited disease, which manifests mainly in young adults, affecting predominantly males. Clinically LHON has a manifestation as painless central vision loss, resulting in early onset of disability. Epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients in the Western Siberia population. Known “primary” pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53,10% (17/32), m.3460G>A – 21,90% (7/32), m.14484T>C – 18,75% (6/32), and rare m.10663T>C and m.3635G>A represent 6,25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.9444C>T, m.6261G>A, m.9921G>A, m.8551T>C, m.8412T>C, m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1574 ◽  
Author(s):  
Elena Starikovskaya ◽  
Sofia Shalaurova ◽  
Stanislav Dryomov ◽  
Azhar Nazhmidenova ◽  
Natalia Volodko ◽  
...  

Our data first represent the variety of Leber’s hereditary optic neuropathy (LHON) mutations in Western Siberia. LHON is a disorder caused by pathogenic mutations in the mitochondrial DNA (mtDNA), inherited maternally and presents mainly in young adults, predominantly males. Clinically, LHON manifests itself as painless central vision loss, resulting in early onset of disability. The epidemiology of LHON has not been fully investigated yet. In this study, we report 44 genetically unrelated families with LHON manifestation. We performed whole mtDNA genome sequencing and provided genealogical and molecular genetic data on mutations and haplogroup background of LHON patients. Known “primary” pathogenic mtDNA mutations (MITOMAP) were found in 32 families: m.11778G>A represents 53.10% (17/32), m.3460G>A—21.90% (7/32), m.14484T>C–18.75% (6/32), and rare m.10663T>C and m.3635G>A represent 6.25% (2/32). We describe potentially pathogenic m.4659G>A in one subject without known pathogenic mutations, and potentially pathogenic m.6261G>A, m.8412T>C, m.8551T>C, m.9444C>T, m.9921G>A, and m.15077G>A in families with known pathogenic mutations confirmed. We suppose these mutations could contribute to the pathogenesis of optic neuropathy development. Our results indicate that haplogroup affiliation and mutational spectrum of the Western Siberian LHON cohort substantially deviate from those of European populations.


2020 ◽  
Vol 3 ◽  
pp. 251581632093957 ◽  
Author(s):  
Todd D Rozen

Is it possible that some mitochondrial DNA (mtDNA) mutations enhance the risk of developing a headache disorder while other mutations actually confer a protective effect? Mitochondrial disorders have been linked to migraine but very rarely to cluster headache (CH). The true pathogenesis of CH is unknown but a linkage to cigarette smoking is irrefutable. Leber’s hereditary optic neuropathy is a syndrome of bilateral vision loss that typically manifests in a patient’s 20s and 30s, is male predominant, and its sufferers are heavy smokers and heavy drinkers. Tobacco exposure is so linked to the condition that only smokers appear to develop vision loss while nonsmokers remain unaffected carriers of their mutations. In essence, the Leber’s hereditary optic neuropathy population is the CH population but at present there have been no reported cases of CH in this mitochondrial subgroup. Thus, could the effects of the mtDNA mutations found in Leber’s hereditary optic neuropathy, which involve complex I of the electron transport chain, actually confer a protective effect against the development of CH? This article will delve into this theory.


2011 ◽  
Vol 30 (4) ◽  
pp. 181-190 ◽  
Author(s):  
Wei-Dong Du ◽  
Gang Chen ◽  
Hui-Min Cao ◽  
Qing-Hui Jin ◽  
Rong-Feng Liao ◽  
...  

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disease. Clinically, no efficient assay protocols have been available. In this study, we aimed to develop an oligonucleotide biochip specialized for detection of known base substitution mutations in mitochondrial DNA causing LHON and to investigate frequencies of LHON relevant variants in Anhui region of China. Thirty-two pairs of oligonucleotide probes matched with the mutations potentially linked to LHON were covalently immobilized. Cy5-lablled targets were amplified from blood DNA samples by a multiplex PCR method. Two kinds of primary mutations 11778 G > A and 14484 T > C from six confirmed LHON patients were interrogated to validate this biochip format. Further, fourteen Chinese LHON pedigrees and twenty-five unrelated healthy individuals were investigated by the LHON biochip, direct sequencing and pyrosequencing, respectively. The biochip was found to be able efficiently to discriminate homoplasmic and heteroplasmic mtDNA mutations in LHON. Biochip analysis revealed that twelve of eighteen LHON symptomatic cases from the 14 Chinese pedigree harbored the mutations either 11778G > A, 14484T > C or 3460G > A, respectively, accounting for 66.7%. The mutation 11778G > A in these patients was homoplasmic and prevalent (55.5%, 10 of 18 cases). The mutations 3460G > A and 3394T > C were found to co-exist in one LHON case. The mutation 13708G > A appeared in one LHON pedigree. Smaller amount of sampling and reaction volume, easier target preparation, fast and high-throughput were the main advantages of the biochip over direct DNA sequencing and pyrosequencing. Our findings suggested that primary mutations of 11778G > A, 14484T > C or 3460G > A are main variants of mtDNA gene leading to LHON in China. The biochip would easily be implemented in clinical diagnosis.


2020 ◽  
Author(s):  
Yan-Jiao Yao ◽  
Xue-Mei Zhuang ◽  
Fan Zheng

Abstract Background: Leber’s Hereditary Optic Neuropathy (LHON) is a maternal inherited disease caused by mitochondrial DNA (mtDNA) mutations. The aim of the current study is to analysis the frequencies of mitochondrial ND1 G3460A, ND4 G11778A and ND6 T14484C mutations in patients with LHON.Methods: Our study enrolled 155 patients with LHON and 83 controls, PCR-Sanger sequencing was performed to screen the presence of these primary mutations. Moreover, we performed clinical, genetic and molecular characterizations of five Chinese families carrying LHON-related three primary mutations.Results: 28 patients with G3460A (18.1%), 86 patients with G11778A (55.5%) and 32 patients carrying T14484C mutation (20.6%) were identified. However, none of these primary mutations were identified in controls. Among them, one patient carrying G3460A, two patients with G11778A and two patients with T14484C mutation had an obvious family history of LHON. Clinical evaluation of these pedigrees showed the variable clinical phenotypes with different age at onset of LHON. Sequence analysis of the complete mtDNA genes from the matrilineal relatives suggested the presence of these primary mutations. However, the lack of any functional variants in mtDNA genes revealed that mitochondrial haplogroups or haplotypes may not play important roles in the clinical phenotypic manifestation of LHON-associated primary mutations.Conclusions: Our data indicated that screening for the mtDNA primary mutations was necessary for early detection, prevention and diagnosis of LHON.


2021 ◽  
Vol 12 ◽  
Author(s):  
Camille Peron ◽  
Alessandra Maresca ◽  
Andrea Cavaliere ◽  
Angelo Iannielli ◽  
Vania Broccoli ◽  
...  

More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10651
Author(s):  
Yu Ding ◽  
Guangchao Zhuo ◽  
Qinxian Guo ◽  
Meiya Li

Leber’s Hereditary Optic Neuropathy (LHON) was a common maternally inherited disease causing severe and permanent visual loss which mostly affects males. Three primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A and ND6 14484T>C, which affect genes encoding respiratory chain complex I subunit, are responsible for >90% of LHON cases worldwide. Families with maternally transmitted LHON show incomplete penetrance with a male preponderance for visual loss, suggesting the involvement of secondary mtDNA variants and other modifying factors. In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation, influence the post-transcriptionalmodification and affect tRNA maturation. Failure of mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding, and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates mitochondrial dysfunction that is involved in the progression and pathogenesis of LHON. This review summarizes the recent advances in our understanding of mt-tRNA biology and function, as well as the reported LHON-related mt-tRNA second variants; it also discusses the molecular mechanism behind the involvement of these variants in LHON.


Sign in / Sign up

Export Citation Format

Share Document