scholarly journals Traction forces control cell-edge dynamics and mediate distance-sensitivity during cell polarization

2019 ◽  
Author(s):  
Zeno Messi ◽  
Alicia Bornert ◽  
Franck Raynaud ◽  
Alexander Verkhovsky

SUMMARYTraction forces are generated by cellular actin-myosin system and transmitted to the environment through adhesions. They are believed to drive cell motion, shape changes, and extracellular matrix remodeling [1–3]. However, most of the traction force analysis has been performed on stationary cells, investigating forces at the level of individual focal adhesions or linking them to static cell parameters such as area and edge curvature [4–10]. It is not well understood how traction forces are related to shape changes and motion, e.g. forces were reported to either increase or drop prior to cell retraction [11–15]. Here, we analyze the dynamics of traction forces during the protrusion-retraction cycle of polarizing fish epidermal keratocytes and find that forces fluctuate in concert with the cycle, increasing during the protrusion phase and reaching maximum at the beginning of retraction. We relate force dynamics to the recently discovered phenomenological rule [16] that governs cell edge behavior during keratocyte polarization: both traction forces and the probability of switch from protrusion to retraction increase with the distance from the cell center. Diminishing traction forces with cell contractility inhibitor leads to decreased edge fluctuations and abnormal polarization, while externally applied force can induce protrusion-retraction switch. These results suggest that forces mediate distance-sensitivity of the edge dynamics and ultimately organize cell-edge behavior leading to spontaneous polarization. Actin flow rate did not exhibit the same distance-dependence as traction stress, arguing against its role in organizing edge dynamics. Finally, using a simple model of actin-myosin network, we show that force-distance relationship may be an emergent feature of such networks.


2019 ◽  
Author(s):  
Zeno Messi ◽  
Alicia Bornert ◽  
Franck Raynaud ◽  
Alexander B. Verkhovsky


2020 ◽  
Vol 30 (9) ◽  
pp. 1762-1769.e5 ◽  
Author(s):  
Zeno Messi ◽  
Alicia Bornert ◽  
Franck Raynaud ◽  
Alexander B. Verkhovsky


2010 ◽  
Vol 21 (19) ◽  
pp. 3362-3375 ◽  
Author(s):  
Gerald Burgstaller ◽  
Martin Gregor ◽  
Lilli Winter ◽  
Gerhard Wiche

Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization.



2019 ◽  
Vol 2 (1) ◽  
pp. e201800135 ◽  
Author(s):  
Hung-Wei Cheng ◽  
Cheng-Te Hsiao ◽  
Yin-Quan Chen ◽  
Chi-Ming Huang ◽  
Seng-I Chan ◽  
...  

Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.



1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.





2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.



Sign in / Sign up

Export Citation Format

Share Document