scholarly journals Diffusion tubes: a method for the mass culture of ctenophores and other pelagic marine invertebrates

2019 ◽  
Author(s):  
Wyatt L. Patry ◽  
Mac Kenzie Bubel ◽  
Cypress Hansen ◽  
Thomas Knowles

AbstractThe culture of pelagic marine invertebrates, especially the ctenophore Mnemiopsis leidyi, has been demonstrated in past studies dating back to the 1960’s, however the mass culture of delicate pelagic invertebrates has remained elusive. By using a pair of acrylic tubes and enabling water diffusion between them, we have been able to reliably and cost effectively mass culture several genera of ctenophores (Pleurobrachia, Hormiphora, Bolinopsis, Mnemiopsis, and Leucothea), one species of siphonophore (Nanomia) and one species of larvacean (Oikopleura). The simple, compact method is effective enough to support two permanent exhibits of ctenophores at the Monterey Bay Aquarium while minimizing live food culture requirements with the potential to support further investigation of pelagic marine invertebrate ontogeny, ecology and genomics.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8938 ◽  
Author(s):  
Wyatt L. Patry ◽  
MacKenzie Bubel ◽  
Cypress Hansen ◽  
Thomas Knowles

The culture of pelagic marine invertebrates, especially the ctenophore Mnemiopsis leidyi, has been demonstrated in past studies dating back to the 1960s; however, the mass culture of delicate pelagic invertebrates has remained elusive. By using a pair of acrylic tubes and enabling water diffusion between them, we have been able to reliably and cost effectively mass culture several genera of ctenophores (Pleurobrachia, Hormiphora, Bolinopsis, Mnemiopsis and Leucothea), one species of siphonophore (Nanomia) and one species of larvacean (Oikopleura). The simple, compact method is effective enough to support two permanent exhibits of ctenophores at the Monterey Bay Aquarium while minimizing live food culture requirements with the potential to support further investigation of pelagic marine invertebrate ontogeny, ecology and genomics.



Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 161
Author(s):  
Irene Deidda ◽  
Roberta Russo ◽  
Rosa Bonaventura ◽  
Caterina Costa ◽  
Francesca Zito ◽  
...  

Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.



1992 ◽  
Vol 49 (5) ◽  
pp. 1010-1017 ◽  
Author(s):  
Nicolas S. Bloom

Total mercury, monomethylmercury (CH3Hg), and dimethylmercury ((CH3)2Hg) in edible muscle were examined in 229 samples, representing seven freshwater and eight saltwater fish species and several species of marine invertebrates using ultraclean techniques. Total mercury was determined by hot HNO3/H2SO4/BrClldigestion, SnCl2 reduction, purging onto gold, and analysis by cold vapor atomic fluorescence spectrometry (CVAFS). Methylmercury was determined by KOH/methanol digestion using aqueous phase ethylation, cryogenic gas chromatography, and CVAFS detection. Total mercury and CH3Hg concentrations varied from 0.011 to 2.78 μg∙g−1 (wet weight basis, as Hg) for all samples, while no sample contained detectable (CH3)2Hg (<0.001 μg∙g−1 as Hg). The observed proportion of total mercury (as CH3Hg) ranged from 69 to 132%, with a relative standard deviation for quintuplicate analysis of about 10%; nearly all of this variability can be explained by the analytical variability of total mercury and CH3Hg. Poorly homogenized samples showed greater variability, primarily because total mercury and CH3Hg were measured on separate aliquots, which vary in mercury concentration, not speciation. I conclude that for all species studied, virtually ail (>95%) of the mercury present is as CH3Hg and that past reports of substantially lower CH3Hg fractions may have been biased by analytical and homogeneity variability.



The Holocene ◽  
2018 ◽  
Vol 28 (12) ◽  
pp. 1894-1908
Author(s):  
Andréanne Bourgeois-Roy ◽  
Hugo Crites ◽  
Pascal Bernatchez ◽  
Denis Lacelle ◽  
André Martel

The late Pleistocene–early Holocene transition period was characterized by rapid environmental change. Here, we investigate the impact of these changes on the marine invertebrates living in a shallow inlet of the post-glacial Goldthwait Sea. The site is located near Baie-Comeau (QC, Canada), where a number of remarkably well-preserved shell deposits are found along the Rivière aux Anglais Valley on the north shore of the St. Lawrence maritime estuary. Seven phyla of marine invertebrates with a minimum of 25 species or taxa were inventoried in a shell deposit, dominated by a community of Hiatella arctica with Mytilus edulis and barnacles composing the subcommunity. The majority of taxa identified in the shell deposit are boreal and sub-Arctic species; however, temperate species that exist today in the St. Lawrence maritime estuary have not been found. Based on marine invertebrate diversity and δ18O(CaCO3) of Mytilus edulis, the water in the shallow inlet of the Goldthwait Sea must have been cold and saline. The range of AMS 14C ages from 15 Mytilus edulis, constrained to 10,900 and 10,690 cal. yr BP, and exceptional state of preservation of adult and juvenile molluscan specimens suggest the abrupt mortality of entire invertebrate communities due to changing hydrodynamic conditions that included the combined effect of freshwater discharge from the receding Laurentide Ice Sheet and rapid isostatic uplift.





Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 474 ◽  
Author(s):  
Vladimir L. Katanaev ◽  
Salvatore Di Falco ◽  
Yuri Khotimchenko

Despite huge efforts by academia and pharmaceutical industry, cancer remains the second cause of disease-related death in developed countries. Novel sources and principles of anticancer drug discovery are in urgent demand. Marine-derived natural products represent a largely untapped source of future drug candidates. This review focuses on the anticancer drug discovery potential of marine invertebrates from the North-West Pacific. The issues of biodiversity, chemodiversity, and the anticancer pharmacophore diversity this region hides are consecutively discussed. These three levels of diversity are analyzed from the point of view of the already discovered compounds, as well as from the assessment of the overall, still undiscovered and enormous potential. We further go into the predictions of the economic and societal benefits the full-scale exploration of this potential offers, and suggest strategic measures to be taken on the national level in order to unleash such full-scale exploration. The transversal and multi-discipline approach we attempt to build for the case of marine invertebrate-based anticancer drug discovery from a given region can be applied to other regions and disease conditions, as well as up-scaled to global dimensions.



Sign in / Sign up

Export Citation Format

Share Document