Abrupt mortality of marine invertebrates at the Younger Dryas-Holocene transition in a shallow inlet of the Goldthwait Sea

The Holocene ◽  
2018 ◽  
Vol 28 (12) ◽  
pp. 1894-1908
Author(s):  
Andréanne Bourgeois-Roy ◽  
Hugo Crites ◽  
Pascal Bernatchez ◽  
Denis Lacelle ◽  
André Martel

The late Pleistocene–early Holocene transition period was characterized by rapid environmental change. Here, we investigate the impact of these changes on the marine invertebrates living in a shallow inlet of the post-glacial Goldthwait Sea. The site is located near Baie-Comeau (QC, Canada), where a number of remarkably well-preserved shell deposits are found along the Rivière aux Anglais Valley on the north shore of the St. Lawrence maritime estuary. Seven phyla of marine invertebrates with a minimum of 25 species or taxa were inventoried in a shell deposit, dominated by a community of Hiatella arctica with Mytilus edulis and barnacles composing the subcommunity. The majority of taxa identified in the shell deposit are boreal and sub-Arctic species; however, temperate species that exist today in the St. Lawrence maritime estuary have not been found. Based on marine invertebrate diversity and δ18O(CaCO3) of Mytilus edulis, the water in the shallow inlet of the Goldthwait Sea must have been cold and saline. The range of AMS 14C ages from 15 Mytilus edulis, constrained to 10,900 and 10,690 cal. yr BP, and exceptional state of preservation of adult and juvenile molluscan specimens suggest the abrupt mortality of entire invertebrate communities due to changing hydrodynamic conditions that included the combined effect of freshwater discharge from the receding Laurentide Ice Sheet and rapid isostatic uplift.

Author(s):  
A.R. Waterston

SynopsisThe Outer Hebrides, because of their apparent isolation, attracted zoologists in the past who looked for new species and subspecies and some sought to explain the origin of the invertebrate fauna by exotic land connections in preglacial times. These expectations were largely unfulfilled and the speculations are unsupported by geologists or geomorphologists. The non-marine invertebrate fauna is examined from published records, museum collections and special field surveys and the lists total over 2500 species, of which approximately one-third are of general occurrence in the Outer Hebrides. Three species of mites are new to the British fauna and over 700 species, mainly insects, are additions to the Hebridean fauna. The fauna is impoverished compared with the mainland and this may be due to climate and the lack of variety of habitats and the low structure of the vegetative cover. Upland species occur on the moors and some descend to sea level, possibly on account of the low mean temperature in summer. Species with a north western distribution occur in the Odonata, Hemiptera, Lepidoptera, Hymenoptera and Diptera. Species with a discontinuous distribution are discussed and it is suggested that some reached the islands by natural means and others by human agency and there is no evidence of refugia for a glacial relict fauna. Examples are given of insects with a south western distribution arriving by sea in driftwood and five amphiatlantic species, including a freshwater sponge, which may have been brought by migrating birds, a wrack-fly, two strand-line beetles and a mite, which may have been distributed by the Gulf Stream and the North Atlantic Drift.There are no endemic species, but a few so-called subspecies of insects may be restricted to the Outer Hebrides. Changes in the fauna are traceable in a stratified Flandrian shell deposit in Harris, where two species have become extinct, and some insects have also become extinct in St Kilda during the last century. Some of the most conspicuous land snails have arrived in historic times and the most rapid coloniser has been a brackish-water snail which has spread throughout the islands since 1933.


2021 ◽  
Author(s):  
Henrique Niza ◽  
Marta Bento ◽  
Luis Lopes ◽  
Alexandra Cartaxana ◽  
Alexandra Correia

The amount of biological data available in online repositories is increasing at an exponential rate. However, data on marine invertebrate biodiversity resources are still sparse and scattered in these countries. Online repositories are useful instruments for biodiversity research, as they provide a fast access to data from different sources. The use of interactive platforms comprising web mapping are becoming more important not only for the scientific community, but also for conservation managers, decision-makers and the general public as they allow data presentation in simple and understandable visual schemes. The main goal of this study was to create an interactive online digital map (MARINBIODIV Atlas), through the collection of data from various sources, to visualize marine invertebrate occurrences and distribution across different habitats, namely mangroves, seagrasses, corals and other coastal areas, in Mozambique and São Tomé and Príncipe. The acquired biodiversity data were managed and structured to be displayed as spatial data and to be disseminated using the geographic information system ArcGIS, where data can be accessed, filtered and mapped. The ArcGIS web mapping design tools were used to produce interactive maps to visualize marine invertebrate diversity information along the coasts of Mozambique and São Tomé and Príncipe, through different habitats, offering the foundation for analysing species incidence and allocation information. Understanding the spatial occurrences and distribution of marine invertebrates in both countries can provide a valuable baseline, regarding information and trends on their coastal marine biodiversity.


2016 ◽  
Vol 13 (3) ◽  
pp. 751-760 ◽  
Author(s):  
A. Ponnurangam ◽  
M. Bau ◽  
M. Brenner ◽  
A. Koschinsky

Abstract. Mussel shells are potential bioarchives of proxies for changes in the physicochemical conditions in the bivalve's habitat. One such proxy is the distribution of rare earths and yttrium (REY) in seawater, as REY speciation in seawater is sensitive to pH and temperature variations, due to the impact of these parameters on the activity of CO32− in seawater. We present a new protocol for sample preparation and determination of ultratrace concentrations of REY in bulk bivalve shells (comprised of calcite and aragonite) that includes sample treatment with NaOCl followed by REY separation and preconcentration. The data obtained were used to calculate REY partition coefficients between bulk bimineralic shells of Mytilus edulis (calcite aragonite mix) and ambient seawater, and the results acquired were then used to investigate the potential effects of pH and temperature on REY partitioning.Shells of Mytilus edulis mussels from the North Sea show consistent shale-normalized (SN) REY patterns that increase from the light REY to the middle REY and decrease from the middle REY to the heavy REY. Despite being different from the general seawater REYSN pattern, the shells still display distinct REY features of seawater, such as a negative CeSN anomaly and small positive YSN and GdSN anomalies. Apparent REY partition coefficients between shells and seawater (appDTot.REYshell/seawater) are low and decrease strongly from the light REY (4.04 for La) to the heavy REY (0.34 for Lu). However, assuming that only the free REY3+ are incorporated into the shell, modDFreeREY3+shell/seawater values are higher and comparatively similar for all REY (102.46 for La; 113.44 for Lu) but show a slight maximum at Tb (199.18). Although the impact of vital effects, such as REY speciation in a mussel's extrapallial fluid from which the carbonate minerals precipitate, cannot be quantified yet, it appears that M. edulis shells are bioarchives of some REY features of seawater.We modeled the REYSN patterns of a hypothetical mussel shell at pH 8.2 and 7.6 and at temperatures of 25 and 5 °C, assuming that only free REY3+ are incorporated into the carbonate's crystal lattice and that vital effects do not obliterate the REY signal of the shells. The results suggest that with lower pH, REY concentrations in shells increase, but with little effect on the shape of the REYSN patterns, while a temperature change has an impact on the REYSN pattern but only minor effects on REY concentrations. Hence, after additional calibration studies, the REY systematics in mussel shells may become a valuable proxy for paleo-pH and ocean acidification.


2012 ◽  
Vol 8 (3) ◽  
pp. 935-949 ◽  
Author(s):  
D. Hofer ◽  
C. C. Raible ◽  
A. Dehnert ◽  
J. Kuhlemann

Abstract. Using a highly resolved atmospheric general circulation model, the impact of different glacial boundary conditions on precipitation and atmospheric dynamics in the North Atlantic region is investigated. Six 30-yr time slice experiments of the Last Glacial Maximum at 21 thousand years before the present (ka BP) and of a less pronounced glacial state – the Middle Weichselian (65 ka BP) – are compared to analyse the sensitivity to changes in the ice sheet distribution, in the radiative forcing and in the prescribed time-varying sea surface temperature and sea ice, which are taken from a lower-resolved, but fully coupled atmosphere-ocean general circulation model. The strongest differences are found for simulations with different heights of the Laurentide ice sheet. A high surface elevation of the Laurentide ice sheet leads to a southward displacement of the jet stream and the storm track in the North Atlantic region. These changes in the atmospheric dynamics generate a band of increased precipitation in the mid-latitudes across the Atlantic to southern Europe in winter, while the precipitation pattern in summer is only marginally affected. The impact of the radiative forcing differences between the two glacial periods and of the prescribed time-varying sea surface temperatures and sea ice are of second order importance compared to the one of the Laurentide ice sheet. They affect the atmospheric dynamics and precipitation in a similar but less pronounced manner compared with the topographic changes.


2007 ◽  
Vol 76 (2) ◽  
pp. 103-120 ◽  
Author(s):  
Eleni Voultsiadou ◽  
Dimitris Vafidis

The aim of this paper is to bring to light Aristotle’s knowledge of marine invertebrate diversity as this has been recorded in his works 25 centuries ago, and set it against current knowledge. The analysis of information derived from a thorough study of his zoological writings revealed 866 records related to animals currently classified as marine invertebrates. These records corresponded to 94 different animal names or descriptive phrases which were assigned to 85 current marine invertebrate taxa, mostly (58%) at the species level. A detailed, annotated catalogue of all marine anhaima (a = without, haima = blood) appearing in Aristotle’s zoological works was constructed and several older confusions were clarified. Some of Aristotle’s “genera” were found to be directly correlated to current invertebrate higher taxa. Almost the total of the marine anhaima were benthic invertebrates. The great philosopher had a remarkable, well-balanced scientific knowledge of the diversity of the various invertebrate groups, very similar to that acquired by modern marine biologists in the same area of study. The results of the present study should be considered as a necessary starting point for a further analysis of Aristotle’s priceless contribution to the marine environment and its organisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Henrique Niza ◽  
Marta Bento ◽  
Luis Lopes ◽  
Alexandra Cartaxana ◽  
Alexandra Correia

The amount of biological data available in online repositories is increasing at an exponential rate. However, data on marine invertebrate biodiversity resources from Mozambique and São Tomé and Príncipe are still sparse and scattered. Online repositories are useful instruments for biodiversity research, as they provide a fast access to data from different sources. The use of interactive platforms comprising web mapping are becoming more important, not only for the scientific community, but also for conservation managers, decision-makers and the general public as they allow data presentation in simple and understandable visual schemes. The main goal of this study was to create an interactive online digital map (hosted and available at MARINBIODIV Atlas), through the collection of data from various sources, to visualise marine invertebrate occurrences and distribution across different habitats, namely mangroves, seagrasses, corals and other coastal areas, in Mozambique and São Tomé and Príncipe. The acquired biodiversity data were managed and structured to be displayed as spatial data and to be disseminated using the geographic information system ArcGIS, where data can be accessed, filtered and mapped. The ArcGIS web mapping design tools were used to produce interactive maps to visualise marine invertebrate diversity information along the coasts of Mozambique and São Tomé and Príncipe, through different habitats, offering the foundation for analysing species incidence and allocation information. Understanding the spatial occurrences and distribution of marine invertebrates in both countries can provide a valuable baseline, regarding information and trends on their coastal marine biodiversity.


2019 ◽  
Vol 7 (1) ◽  
pp. 473-497 ◽  
Author(s):  
Jose V. Lopez ◽  
Bishoy Kamel ◽  
Mónica Medina ◽  
Timothy Collins ◽  
Iliana B. Baums

Conservation genomics aims to preserve the viability of populations and the biodiversity of living organisms. Invertebrate organisms represent 95% of animal biodiversity; however, few genomic resources currently exist for the group. The subset of marine invertebrates includes the most ancient metazoan lineages and possesses codes for unique gene products and possible keys to adaptation. The benefits of supporting invertebrate conservation genomics research (e.g., likely discovery of novel genes, protein regulatory mechanisms, genomic innovations, and transposable elements) outweigh the various hurdles (rare, small, or polymorphic starting materials). Here we review best conservation genomics practices in the laboratory and in silico when applied to marine invertebrates and also showcase unique features in several case studies of acroporid corals, crown-of-thorns starfish, apple snails, and abalone. Marine conservation genomics should also address how diversity can lead to unique marine innovations, the impact of deleterious variation, and how genomic monitoring and profiling could positively affect broader conservation goals (e.g., value of baseline data for in situ/ex situ genomic stocks).


2018 ◽  
Vol 44 (1) ◽  
pp. 187 ◽  
Author(s):  
C. García-Hernández ◽  
J. Ruiz-Fernández ◽  
C. Sánchez-Posada ◽  
S. Pereira ◽  
M. Oliva

Between the late Little Ice Age (LIA) cold stage and the early 20th century warmer scenario, a transitional regime characterized by an unstable climatic pattern generated a series of climate extremes affecting mid-latitude mountainous areas, as the Asturian Massif. There, the 1888 snow avalanche cycle appears as the most significant event, standing out among the rest of avalanche cycles recorded in this area during the 1800-2015 period both in terms of the number of damaging avalanches and damages caused by them. Among the factors that explain this event stands out the orographic precipitation phenomenon; the interaction of a cold and wet air mass originating from the North Atlantic with the relief of the Massif, which led to extraordinary snow thicknesses (>2 m) at very low altitudes (500 m a.s.l.), especially in the north-facing, Asturian versant of the Cantabrian Mountains. This allowed the triggering of avalanches in slopes gentler and in lower altitudes than usual, covering longer distances; consequently, avalanches reached more easily the settlements, generally placed at the bottom of the valley or in middle slope positions. The greater impact on the settlements, which suffered 84% of the damages, was the cause of this episode’s high socioeconomic impact (29 people dead, 34 injured, 123 heads of cattle dead, 124 buildings destroyed). These events occurred at a time when the mountain villages were highly populated and subjected to intense exploitation, coinciding with the development of new communication infrastructures in the upper parts of the Massif. Therefore, the 1888 episode constitutes a good example of both the impact of hydrometeorological events in mountain environments under high demographic pressure, and of climate extremes involved in a transition period from cold to warmer weather conditions.


Sign in / Sign up

Export Citation Format

Share Document