scholarly journals Cortico-striatal synaptic plasticity underlying compulsive reward seeking

2019 ◽  
Author(s):  
Masaya Harada ◽  
Agnes Hiver ◽  
Vincent Pascoli ◽  
Christian Lüscher

AbstractLoss of control over drug intake and persistent drug-seeking despite negative consequences define addiction. Increase dopamine levels in the mesolimbic system may constitute the initial trigger. Optogenetic self-stimulation of VTA DA neurons (oDASS) has thus been proposed as an addiction model. Indeed, lever pressing to turn on a laser aimed at ChR2 expressing DA neurons is strongly reinforcing. Clinical observations indicate that drug-seeking even with the risk of harmful consequences occurs only in a fraction of users, with chronic drug consumption. Here, mice carried out a seek-take chain in order to selectively study compulsive seeking behavior. Once fully established, a probabilistic punishment of the seeking lever led to the emergence of two classes of mice; those that persevered and those that renounced oDASS. Ex vivo characterization of three distinct cortico-striatal streams demonstrated a selective potentiation of excitatory synapses of the orbito-frontal cortex (OFC) to dorsal striatum projection in persevering mice. Taken together, our data indicate a gain-of-function of OFC striatal control in compulsive oDASS.

2020 ◽  
pp. 65-86
Author(s):  
Noelle C. Anastasio ◽  
Dennis J. Sholler ◽  
Brionna D. Davis-Reyes ◽  
Amanda E. Price ◽  
Michelle A. Land ◽  
...  

Vulnerability to initiate use of psychoactive drugs as well as relapse to drug-seeking in patients with established substance use disorders are precipitated by behavioral disinhibition or impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to negative consequences) and attentional bias toward drug cues (cue reactivity). These behavioral phenotypes are not independent mechanistically nor neurobiologically, and preclinical analyses have demonstrated the complex nature of the interactions between these interlocked phenotypic behaviors, including aspects of their shared neurobiology and circuitry. This chapter focuses on impulsivity and drug-seeking behaviors from a preclinical perspective and summarizes studies exploring the impact of substances of abuse in the context of the neurobiology of impulsivity and drug-seeking behaviors in rodents.


2021 ◽  
Author(s):  
◽  
Amy Ewald

<p>Acute kappa opioid receptor (KOPr) activation by traditional agonists produces antiaddiction properties, but side effects such as sedation and depression prevent their clinical use. The novel KOPr agonist salvinorin A (Sal A), isolated from the plant Salvia divinorum, is a potent and selective KOPr agonist with a unique non-nitrogenous structure. Sal A possesses anti-addiction effects with less side effects than traditional KOPr agonists, but its short duration of action limits its therapeutic usefulness. To test the hypothesis that longer acting structural analogues of Sal A may yield a new class of therapeutics, the anti-cocaine effects of Sal A analogues such as 16-bromosalvinorin A (16-brSal A), ethoxymethyl ether salvinorin B (EOM Sal B), and methoxymethyl ether salvinorin B (MOM Sal B) were evaluated. 16-brSal A (1.0 mg/kg) displayed a longer duration of action in mice compared to Sal A, evidenced using the tail flick test (p<0.05). Both 16-brSal A and EOM Sal B produced dose-dependent decreases in cocaine-induced reinstatement of drug seeking (p<0.05). On the other hand, 16-brSal A (1.0 mg/kg) but not MOM Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity (p<0.05), although both compounds showed no sedative effects in the locomotor activity test in rats. This indicates the superior behavioural anti-cocaine profile of 16-brSal A at its minimum effective dose. These three compounds, together with another analogue that also decreased cocaineinduced drug seeking, β-tetrahydropyran salvinorin B (β-THP Sal B), were screened for typical KOPr-mediated side effects using the minimal effective doses that attenuated drug seeking. MOM Sal B but not EOM Sal B (0.1 mg/kg), β-THP Sal B (1.0 mg/kg), or 16-brSal A produced depressive-like effects in the forced swim test (FST) in rats (p<0.05). However, EOM Sal B displayed a reduction in swimming time coupled with an increase in climbing duration in the FST (p<0.05). On the other hand, β-THP Sal B (p<0.001, between 30 – 45 min) and EOM Sal B (p<0.05, between 15 – 30 min) significantly increased sucrose intake in the rat sucrose self-administration model at different time intervals. 16-brSal A, however, produced no significant changes in natural reward intake measured by sucrose self-administration. The improved behavioural profile of 16-brSal A extended to a lack of anxiogenic effects. No significant anxiety-like behaviour was seen in the light dark or elevated plus maze, although aversion was observed in the conditioned place aversion paradigm (p<0.05). The low incidence of adverse effects of 16-brSal A compared to other iv Sal A analogues in behavioural models prompted additional cellular studies of this KOPr agonist. As the anti-cocaine effects of KOPr agonists have been attributed to their ability to modulate dopamine (DA) levels, 16-brSal A was examined for its ability to regulate dopamine transporter (DAT) function. DAT function was determined in vitro by determining uptake of a fluorescent substrate, ASP+, in HEK-293 cells expressing YFP-DAT and myc-KOPr. Ex vivo studies were also conducted by measuring DA uptake in isolated, minced rat dorsal striatum and nucleus accumbens using rotating disk electrode voltammetry. 16-brSal A significantly increased DAT function in both the in vitro (10 μM) and ex vivo (500 nM) models (p<0.05), an effect that was dependent on extracellular regulated kinase 1/2 (ERK1/2). Since late phase ERK1/2 and p38 kinase activation have been attributed to negative KOPr behavioural responses, the effects of 16-brSal A on these pathways were also examined. Western blotting studies revealed that 16-brSal A selectively activated only the early (5 – 15 min) but not late phase (120 – 180 min) ERK1/2 pathway in HEK-293 cells as well as rat dorsal striatum, prefrontal cortex, and nucleus accumbens (p<0.05). 16-brSal A also produced no significant activation of p38 kinase in the dorsal striatum or prefrontal cortex of rats, although significant phosphorylation was seen in the nucleus accumbens (p<0.05). The ability of 16-brSal A to produce desired behavioural anti-addiction effects with fewer adverse effects, matched with its regulation of KOPr signalling pathways, suggests that it may possibly be a functionally selective agonist that preferentially activates the G-protein signalling pathway at the KOPr. Since understanding the potential use of novel KOPr agonists in different phases of the addiction cycle is crucial to ensure effective administration of therapies, Sal A and 16-brSal A were tested in rats self-administering cocaine on the long access (Sal A) and progressive ratio (Sal A and 16-brSal A) schedules. Although no differences in cocaine responding were seen with KOPr agonist treatment in either paradigms, a higher dose or concurrent infusions of KOPr agonist with cocaine may improve the responses observed. Overall, the novel KOPr agonist, 16-brSal A has excellent potential as a pharmacotherapy due to its anti-cocaine effects and minimal adverse side effect profile. This is the first study to examine in detail the behavioural and cellular actions of 16-brSal A, and supports previous reports of Sal A-derived KOPr agonists as prospective therapeutics for cocaine abuse.</p>


2019 ◽  
Author(s):  
Dipanwita Pati ◽  
Melanie M. Pina ◽  
Thomas L. Kash

AbstractContextual cues associated with drugs of abuse, such as ethanol, can trigger craving and drug seeking behavior. Pavlovian procedures, such as place conditioning, have been widely used to study the rewarding/aversive properties of drugs and the association between environmental cues and drug seeking. Previous research has shown that ethanol as an unconditioned stimulus can induce a strong conditioned place preference (CPP) or aversion (CPA) in rodents. However, the neural mechanisms underlying ethanol induced reward and aversion have not been thoroughly investigated. The bed nucleus of the stria terminalis (BNST), an integral part of the extended amygdala, is engaged by both rewarding and aversive stimuli and plays a role in ethanol seeking behavior. Here, we used ex-vivo slice physiology to probe learning-induced synaptic plasticity in the BNST following ethanol-induced CPP and CPA. Male DBA/2J mice (2-3 months old) were conditioned using previously reported ethanol-induced CPP/CPA procedures. Ethanol-induced CPP was associated with increased neuronal excitability in the ventral BNST (vBNST). Conversely, ethanol-induced CPA resulted in a significant decrease in spontaneous glutamatergic transmission without alterations in GABAergic signaling. Ethanol-CPA also led to significant increase in paired pulse ratio at excitatory synapses, suggestive of a decrease in presynaptic glutamate release. Collectively, these data demonstrate that the vBNST is involved in the modulation of contextual learning associated with both the rewarding and the aversive properties of ethanol in mice.


2021 ◽  
Author(s):  
Yang Li ◽  
Nan Li ◽  
Liang Qu ◽  
Xin Wang ◽  
Ping Wang ◽  
...  

Abstract Drug addiction is a disorder related to dysfunction in the neural reward memory circuits, and it is characterized by compulsive drug use despite terrible negative consequences. Memory reconsolidation, during which aroused memory is easy to strengthening, weakening or updating, plays an extremely important role in drug addiction. Effectively interfering with the drug memory reconsolidation process would be key in treating drug addiction, but this intervention currently remains impossible. The dopamine motivation system has been widely recognized as an important system for reward, but whether the dopamine motivation system participates in drug memory reconsolidation is unclear. We aimed to explore the role of the dopamine motivation system during the cue-induced cocaine memory reconsolidation process by examining the effect of different pharmacological interventions on the dopamine motivation system during cue-induced cocaine self-administration-related memory reconsolidation drug-seeking behavior. Using a combined behavioral and biological method, our results showed that high concentrations of SCH 23390 and raclopride, or VTA lesions, could effectively disturb subsequent cue-induced cocaine self-administration-related memory reconsolidation drug-seeking behavior in rats. However, low concentrations of SCH 23390 and raclopride could not block this behavior. In summary, only a high dose of dopamine D1 and D2 receptor antagonists, or VTA lesions, could effectively disturb subsequent cue-induced cocaine self-administration-related memory reconsolidation drug-seeking behavior. These findings indicated that pharmacological interventions in the dopamine motivation system could effectively disturb subsequent cue-induced drug memory reconsolidation. Thus, pharmacological interventions on the dopamine motivation system might have therapeutic potential for drug addiction.


2020 ◽  
Author(s):  
Andrew T. Marshall ◽  
Nigel T. Maidment ◽  
Sean B. Ostlund

AbstractImpulsive behavior during adolescence may stem from a developmental imbalance between motivational and impulse control systems, producing greater urges to pursue reward and weakened capacities to inhibit such actions. Here, we developed a Pavlovian-instrumental transfer (PIT) protocol to assay rats’ ability to suppress cue-motivated reward seeking based on changes in reward expectancy. Traditionally, PIT studies focus on how reward-predictive cues motivate instrumental reward-seeking behavior (lever pressing). However, cues signaling imminent reward delivery also elicit countervailing focal-search responses (food-cup approach). We first examined how reward expectancy (cue-reward probability) influences expression of these competing behaviors. Adult male rats increased rates of lever pressing when presented with cues signaling lower probabilities of reward but focused their activity at the food cup on trials with cues that signaled higher probabilities of reward. We then compared adolescent and adult male rats in their responsivity to cues signaling different reward probabilities. In contrast to adults, adolescent rats did not flexibly adjust their pattern of responding based on the expected likelihood of reward delivery but increased their rate of lever pressing for both weak and strong cues. These findings indicate that impulse control over cue-motivated behavior is fundamentally dysregulated during adolescence, providing a model for studying neurobiological mechanisms of adolescent impulsivity.


2021 ◽  
Author(s):  
◽  
Amy Ewald

<p>Acute kappa opioid receptor (KOPr) activation by traditional agonists produces antiaddiction properties, but side effects such as sedation and depression prevent their clinical use. The novel KOPr agonist salvinorin A (Sal A), isolated from the plant Salvia divinorum, is a potent and selective KOPr agonist with a unique non-nitrogenous structure. Sal A possesses anti-addiction effects with less side effects than traditional KOPr agonists, but its short duration of action limits its therapeutic usefulness. To test the hypothesis that longer acting structural analogues of Sal A may yield a new class of therapeutics, the anti-cocaine effects of Sal A analogues such as 16-bromosalvinorin A (16-brSal A), ethoxymethyl ether salvinorin B (EOM Sal B), and methoxymethyl ether salvinorin B (MOM Sal B) were evaluated. 16-brSal A (1.0 mg/kg) displayed a longer duration of action in mice compared to Sal A, evidenced using the tail flick test (p<0.05). Both 16-brSal A and EOM Sal B produced dose-dependent decreases in cocaine-induced reinstatement of drug seeking (p<0.05). On the other hand, 16-brSal A (1.0 mg/kg) but not MOM Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity (p<0.05), although both compounds showed no sedative effects in the locomotor activity test in rats. This indicates the superior behavioural anti-cocaine profile of 16-brSal A at its minimum effective dose. These three compounds, together with another analogue that also decreased cocaineinduced drug seeking, β-tetrahydropyran salvinorin B (β-THP Sal B), were screened for typical KOPr-mediated side effects using the minimal effective doses that attenuated drug seeking. MOM Sal B but not EOM Sal B (0.1 mg/kg), β-THP Sal B (1.0 mg/kg), or 16-brSal A produced depressive-like effects in the forced swim test (FST) in rats (p<0.05). However, EOM Sal B displayed a reduction in swimming time coupled with an increase in climbing duration in the FST (p<0.05). On the other hand, β-THP Sal B (p<0.001, between 30 – 45 min) and EOM Sal B (p<0.05, between 15 – 30 min) significantly increased sucrose intake in the rat sucrose self-administration model at different time intervals. 16-brSal A, however, produced no significant changes in natural reward intake measured by sucrose self-administration. The improved behavioural profile of 16-brSal A extended to a lack of anxiogenic effects. No significant anxiety-like behaviour was seen in the light dark or elevated plus maze, although aversion was observed in the conditioned place aversion paradigm (p<0.05). The low incidence of adverse effects of 16-brSal A compared to other iv Sal A analogues in behavioural models prompted additional cellular studies of this KOPr agonist. As the anti-cocaine effects of KOPr agonists have been attributed to their ability to modulate dopamine (DA) levels, 16-brSal A was examined for its ability to regulate dopamine transporter (DAT) function. DAT function was determined in vitro by determining uptake of a fluorescent substrate, ASP+, in HEK-293 cells expressing YFP-DAT and myc-KOPr. Ex vivo studies were also conducted by measuring DA uptake in isolated, minced rat dorsal striatum and nucleus accumbens using rotating disk electrode voltammetry. 16-brSal A significantly increased DAT function in both the in vitro (10 μM) and ex vivo (500 nM) models (p<0.05), an effect that was dependent on extracellular regulated kinase 1/2 (ERK1/2). Since late phase ERK1/2 and p38 kinase activation have been attributed to negative KOPr behavioural responses, the effects of 16-brSal A on these pathways were also examined. Western blotting studies revealed that 16-brSal A selectively activated only the early (5 – 15 min) but not late phase (120 – 180 min) ERK1/2 pathway in HEK-293 cells as well as rat dorsal striatum, prefrontal cortex, and nucleus accumbens (p<0.05). 16-brSal A also produced no significant activation of p38 kinase in the dorsal striatum or prefrontal cortex of rats, although significant phosphorylation was seen in the nucleus accumbens (p<0.05). The ability of 16-brSal A to produce desired behavioural anti-addiction effects with fewer adverse effects, matched with its regulation of KOPr signalling pathways, suggests that it may possibly be a functionally selective agonist that preferentially activates the G-protein signalling pathway at the KOPr. Since understanding the potential use of novel KOPr agonists in different phases of the addiction cycle is crucial to ensure effective administration of therapies, Sal A and 16-brSal A were tested in rats self-administering cocaine on the long access (Sal A) and progressive ratio (Sal A and 16-brSal A) schedules. Although no differences in cocaine responding were seen with KOPr agonist treatment in either paradigms, a higher dose or concurrent infusions of KOPr agonist with cocaine may improve the responses observed. Overall, the novel KOPr agonist, 16-brSal A has excellent potential as a pharmacotherapy due to its anti-cocaine effects and minimal adverse side effect profile. This is the first study to examine in detail the behavioural and cellular actions of 16-brSal A, and supports previous reports of Sal A-derived KOPr agonists as prospective therapeutics for cocaine abuse.</p>


2021 ◽  
Vol 118 (43) ◽  
pp. e2106624118
Author(s):  
Ida Fredriksson ◽  
Pei-Jung Tsai ◽  
Aniruddha Shekara ◽  
Ying Duan ◽  
Sarah V. Applebey ◽  
...  

We recently introduced a rat model of incubation of opioid craving after voluntary abstinence induced by negative consequences of drug seeking. Here, we used resting-state functional MRI to determine whether longitudinal functional connectivity changes in orbitofrontal cortex (OFC) circuits predict incubation of opioid craving after voluntary abstinence. We trained rats to self-administer for 14 d either intravenous oxycodone or palatable food. After 3 d, we introduced an electric barrier for 12 d that caused cessation of reward self-administration. We tested the rats for oxycodone or food seeking under extinction conditions immediately after self-administration training (early abstinence) and after electric barrier exposure (late abstinence). We imaged their brains before self-administration and during early and late abstinence. We analyzed changes in OFC functional connectivity induced by reward self-administration and electric barrier–induced abstinence. Oxycodone seeking was greater during late than early abstinence (incubation of oxycodone craving). Oxycodone self-administration experience increased OFC functional connectivity with dorsal striatum and related circuits that was positively correlated with incubated oxycodone seeking. In contrast, electric barrier–induced abstinence decreased OFC functional connectivity with dorsal striatum and related circuits that was negatively correlated with incubated oxycodone seeking. Food seeking was greater during early than late abstinence (abatement of food craving). Food self-administration experience and electric barrier–induced abstinence decreased or maintained functional connectivity in these circuits that were not correlated with abated food seeking. Opposing functional connectivity changes in OFC with dorsal striatum and related circuits induced by opioid self-administration versus voluntary abstinence predicted individual differences in incubation of opioid craving.


2012 ◽  
Vol 5 (3) ◽  
pp. 178-189 ◽  
Author(s):  
Oscar Arias-Carrion ◽  
Mohamed Salama

Sign in / Sign up

Export Citation Format

Share Document