scholarly journals Transneuronal delivery of designer-cytokine enables functional recovery after complete spinal cord injury

2019 ◽  
Author(s):  
Marco Leibinger ◽  
Charlotte Zeitler ◽  
Philipp Gobrecht ◽  
Anastasia Andreadaki ◽  
Dietmar Fischer

AbstractSpinal cord injury (SCI) often causes severe and permanent disabilities. The current study uses a transneuronal approach to stimulate spinal cord regeneration by AAV-hyper-IL-6 (hIL-6) application after injury. While preinjury PTEN knockout in cortical motoneurons fails to improve functional recovery after complete spinal cord crush, a single, postinjury injection of hIL-6 into the sensorimotor cortex markedly promotes axon regeneration in the corticospinal and, remarkably, raphespinal tracts enabling significant locomotion recovery of both hindlimbs. Moreover, transduced cortical motoneurons directly innervate serotonergic neurons in both sides of the raphe nuclei equally, enabling the synaptic release of hIL-6 and the transneuronal stimulation of raphe neurons in the brain stem. Functional recovery depends on the regeneration of serotonergic neurons as their degeneration induced by a toxin abolishes the hIL-6-mediated recovery. Thus, the transneuronal application of highly potent cytokines enables functional regeneration by stimulating neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marco Leibinger ◽  
Charlotte Zeitler ◽  
Philipp Gobrecht ◽  
Anastasia Andreadaki ◽  
Günter Gisselmann ◽  
...  

AbstractSpinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2010 ◽  
Vol 12 (2) ◽  
pp. 122-130 ◽  
Author(s):  
Masanori Aoki ◽  
Haruhiko Kishima ◽  
Kazuhiro Yoshimura ◽  
Masahiro Ishihara ◽  
Masaki Ueno ◽  
...  

Object The olfactory mucosa (OM) consists of 2 layers, the epithelium and the lamina propria. Attempts have been made to restore motor function in rat models of spinal cord injury (SCI) by transplanting olfactory ensheathing cells from the lamina propria, but there has been no attempt to transplant the OM in animal models. To investigate the potential of the OM to restore motor function, the authors developed a rat model of SCI and delayed transplantation of syngenic OM. Methods Two weeks after complete transection of the spinal cord at the T-10 level in Wistar rats, pieces of syngenic whole-layer OM were transplanted into the lesion. Rats that underwent respiratory mucosa transplantation were used as controls. The authors evaluated the locomotor activity according to the Basso-Beattie-Bresnahan scale for 8 weeks after transplantation. Obtained spinal cords were analyzed histologically. Results The OM transplantation rats showed significantly greater hindlimb locomotor recovery than the respiratory mucosa–transplanted rats. However, the recovery was limited according to the Basso-Beattie-Bresnahan scale. In the histological examination, the serotonergic raphespinal tract was regenerated. The pseudocyst cavity volume in the vicinity of the SCI lesion correlated negatively with the functional recovery. Conclusions Transplantation of whole-layer OM in rats contributes to functional recovery from SCI, but the effect is limited. In addition to OM transplantation, other means would be necessary for better outcomes in clinical situations.


2019 ◽  
Vol 122 (6) ◽  
pp. 2601-2613
Author(s):  
Brandon K. LaPallo ◽  
Andrea Giorgi ◽  
Marie-Claude Perreault

Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed. NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.


2019 ◽  
Author(s):  
Daniel Sobrido-Cameán ◽  
Blanca Fernández-López ◽  
Natividad Pereiro ◽  
Anunciación Lafuente ◽  
María Celina Rodicio ◽  
...  

AbstractTaurine is one of the most abundant free amino acids in the brain. It is well known that taurine protects the brain from further damage after a traumatic event. However, only a few ex vivo studies have looked at the possible role of taurine in the regulation of axon regeneration after injury. Here, we aimed to reveal the possible role for taurine in the modulation of axonal regeneration following a complete spinal cord injury (SCI) using lampreys as an animal model. The brainstem of lampreys contains several individually identifiable descending neurons that differ greatly in their capacity for axonal regeneration after SCI. This offers a convenient model to promote or inhibit axonal regrowth in the same in vivo preparation. First, we carried out high performance liquid chromatography experiments to measure taurine levels in the spinal cord following SCI. Our results revealed a statistically significant increase in taurine levels 4 weeks post lesion, which suggested that taurine might have a positive effect on axonal regrowth. Based on these results, we decided to apply an acute taurine treatment at the site of injury to study its effect on axon regeneration. Results from these experiments show that an acute taurine treatment enhances axonal regeneration following SCI in lampreys. This offers a novel way to try to promote axon regeneration after nervous system injuries in mammalian models.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Blanca Fernández-López ◽  
Daniel Romaus-Sanjurjo ◽  
María Eugenia Cornide-Petronio ◽  
Sonia Gómez-Fernández ◽  
Antón Barreiro-Iglesias ◽  
...  

Following a spinal injury, lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by the regeneration of descending axons from the brain and the production of new neurons in the spinal cord. Here, we aimed to analyse the changes in the dopaminergic system of the sea lamprey after a complete spinal transection by studying the changes in dopaminergic cell numbers and dopaminergic innervation in the spinal cord. Changes in the expression of the D2 receptor were also studied. We report the full anatomical regeneration of the dopaminergic system after an initial decrease in the number of dopaminergic cells and fibres. Numbers of dopaminergic cells were recovered rostrally and caudally to the site of injury. Quantification of dopaminergic profiles revealed the full recovery of the dopaminergic innervation of the spinal cord rostral and caudal to the site of injury. Interestingly, no changes in the expression of the D2 receptor were observed at time points in which a reduced dopaminergic innervation of the spinal cord was observed. Our observations reveal that in lampreys a spinal cord injury is followed by the full anatomical recovery of the dopaminergic system.


2019 ◽  
Author(s):  
Marco Leibinger ◽  
Charlotte Zeitler ◽  
Philipp Gobrecht ◽  
Anastasia Andreadaki ◽  
Dietmar Fischer

Sign in / Sign up

Export Citation Format

Share Document