scholarly journals The hippocampus as a perceptual map: neuronal and behavioral discrimination during memory encoding

2019 ◽  
Author(s):  
Manuela Allegra ◽  
Lorenzo Posani ◽  
Christoph Schmidt-Hieber

The hippocampus is thought to encode similar events as distinct memory representations that are used for behavioral decisions. Where and how this “pattern separation” function is accomplished in the hippocampal circuit, and how it relates to behavior, is still unclear. Here we perform in vivo 2-photon Ca2+ imaging from hippocampal subregions of head-fixed mice performing a virtual-reality spatial discrimination task. We find that population activity in the input region of the hippocampus, the dentate gyrus, robustly discriminates small changes in environments, whereas spatial discrimination in CA1 reflects the behavioral performance of the animals and depends on the degree of differences between environments. Our results demonstrate that the dentate gyrus amplifies small differences in its inputs, while downstream hippocampal circuits will act as the final arbiter on this decorrelated information, thereby producing a “perceptual map” that will guide behaviour.

2019 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

AbstractEpisodic memory establishes and stores relations among the different elements of an experience, which are often similar and difficult to distinguish. Pattern separation, implemented by the dentate gyrus, is a neural mechanism that allows the discrimination of similar experiences by orthogonalizing synaptic inputs. Granule cells support such disambiguation by sparse rate coding, a process tightly controlled by highly diversified GABAergic neuronal populations, such as somatostatin-expressing cells which directly target the dendritic arbor of granule cells, massively innervated by entorhinal inputs reaching the molecular layer and conveying contextual information. Here, we tested the hypothesis that somatostatin neurons regulate the excitability of the dentate gyrus, thus controlling the efficacy of pattern separation during memory encoding in mice. Indeed, optogenetic suppression of dentate gyrus somatostatin neurons increased spiking activity in putative excitatory neurons and triggered dentate spikes. Moreover, optical inhibition of somatostatin neurons impaired both contextual and spatial discrimination of overlapping episodic-like memories during task acquisition. Importantly, effects were specific for similar environments, suggesting that pattern separation was selectively engaged when overlapping conditions ought to be distinguished. Overall, our results suggest that somatostatin cells regulate excitability in the dentate gyrus and are required for effective pattern separation during episodic memory encoding.Significance statementMemory systems must be able to discriminate stored representations of similar experiences in order to efficiently guide future decisions. This is solved by pattern separation, implemented in the dentate gyrus by granule cells to support episodic memory formation. The tonic inhibitory bombardment produced by multiple GABAergic cell populations maintains low activity levels in granule cells, permitting the process of pattern separation. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the dentate gyrus. Hence, somatostatin cells constitute an ideal candidate to regulate pattern separation. Here, by using optogenetic stimulation in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


2021 ◽  
Author(s):  
Ruy Gómez-Ocádiz ◽  
Massimiliano Trippa ◽  
Lorenzo Posani ◽  
Simona Cocco ◽  
Rémi Monasson ◽  
...  

AbstractEpisodic memory formation and recall are complementary processes that put conflicting requirements on neuronal computations in the hippocampus. How this challenge is resolved in hippocampal circuits is unclear. To address this question, we obtained in vivo whole-cell patch-clamp recordings from dentate gyrus granule cells in head-fixed mice navigating in familiar and novel virtual environments. We find that granule cells consistently show a small transient depolarization of their membrane potential upon transition to a novel environment. This synaptic novelty signal is sensitive to local application of atropine, indicating that it depends on metabotropic acetylcholine receptors. A computational model suggests that the observed transient synaptic response to novel environments may lead to a bias in the granule cell population activity, which can in turn drive the downstream attractor networks to a new state, thereby favoring the switch from generalization to discrimination when faced with novelty. Such a novelty-driven cholinergic switch may enable flexible encoding of new memories while preserving stable retrieval of familiar ones.


Neuroforum ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas-Frederic Sauer ◽  
Marlene Bartos

AbstractThe hippocampus is decisive for the storage of conscious memories. Current theories suggest that experience-dependent modifications in excitation–inhibition balance enable a select group of neurons to form a new cell association during learning which represents the new memory trace. It was further proposed that particularly GABAergic-inhibitory interneurons have a large impact on population activity in neuronal networks by means of their inhibitory output synapses. They synchronize active principal cells at high frequencies, thereby supporting their binding to cell assemblies to jointly encode information. However, how cell associations emerge in space and time and how interneurons may contribute to this process is still largely unknown. We started to address this fundamental question in the dentate gyrus (DG) as the input gate of the hippocampus, which has an indispensable role in conscious memory formation. We used a combination of in vivo chronic two-photon imaging of population activity in the DG and the hippocampal areas CA1–3 of mice exposed to a virtual reality, in which they perform a goal-oriented spatial memory tasks, with high-density in vivo recordings and multiple whole-cell recordings in acute slice preparations, to determine how memory engrams emerge during learning. We further examine how GABAergic interneurons may contribute to this process. We believe that these lines of research will add to a better understanding on the mechanisms of memory formation in cortical networks.


2021 ◽  
Author(s):  
Coralie Berthoux ◽  
Kaoutsar Nasrallah ◽  
Pablo E Castillo

Although brain-derived neurotrophic factor (BDNF) and its effector, Tropomyosin receptor kinase B (TrkB), are implicated in activity-dependent synaptic plasticity, the precise underlying mechanisms remain unclear. In the dentate gyrus, a hippocampal input region that expresses uniquely high levels of BDNF, repetitive activation of mossy cells (MCs) induces a presynaptic, BDNF/TrkB-dependent form of LTP at MC to granule cell (GC) synapses. Here, we report that activity-induced BDNF release from MC axons in mice elicits postsynaptic BDNF release in a TrkB- and calcium-dependent manner, and that BDNF-induced BDNF release is essential for LTP induction. Suppression of BDNF release by tonic and phasic activity of presynaptic type-1 cannabinoid receptors dampened LTP, revealing an unprecedented role of these receptors in controlling neuropeptide release. Lastly, BDNF-mediated MC-GC LTP can be elicited in vivo. Thus, BDNF-induced BDNF release emerges as a mechanism for activity-dependent LTP that may contribute to dentate gyrus-dependent learning, epilepsy, and neuropsychiatric disorders.


2021 ◽  
Author(s):  
Ivan Georgiev Raikov ◽  
Aaron D Milstein ◽  
Prannath Moolchand ◽  
Gergely G Szabo ◽  
Calvin J Schneider ◽  
...  

Large-scale computational models of the brain are necessary to accurately represent anatomical and functional variability in neuronal biophysics across brain regions and also to capture and study local and global interactions between neuronal populations on a behaviorally-relevant temporal scale. We present the methodology behind and an initial implementation of a novel open-source computational framework for construction, simulation, and analysis of models consisting of millions of neurons on high-performance computing systems, based on the NEURON and CoreNEURON simulators. This framework includes an HDF5-based data format for storing morphological, synaptic, and connectivity information of large neuronal network models, and an accompanying open source software library that provides efficient, scalable parallel storage and MPI-based data movement capabilities. We outline our approaches for constructing detailed large-scale biophysical models with topographical connectivity and input stimuli, and present simulation results obtained with a full-scale model of the dentate gyrus constructed with our framework. The model generates sparse and spatially selective population activity that fits well with in-vivo experimental data. Moreover, our approach is fully general and can be applied to modeling other regions of the hippocampal formation in order to rapidly evaluate specific hypotheses about large-scale neural architectural features.


2020 ◽  
Author(s):  
Martin Pofahl ◽  
Negar Nikbakht ◽  
André N. Haubrich ◽  
Theresa Nguyen ◽  
Nicola Masala ◽  
...  

AbstractThe hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in-vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they recapitulate population patterns evoked during self-motion. Using optogenetic inhibition during immobility, we show that granule cell activity during immobility is required to form dentate gyrus-dependent spatial memories. These data suggest that memory formation is supported by dentate gyrus replay of population codes of the current environment.


Sign in / Sign up

Export Citation Format

Share Document