scholarly journals A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae.

1997 ◽  
Vol 11 (6) ◽  
pp. 748-760 ◽  
Author(s):  
D Wotton ◽  
D Shore
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Evan P Hass ◽  
David C Zappulla

In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast.


2004 ◽  
Vol 24 (24) ◽  
pp. 10857-10867 ◽  
Author(s):  
Daniel L. Levy ◽  
Elizabeth H. Blackburn

ABSTRACT Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG1-3 repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length.


2006 ◽  
Vol 27 (5) ◽  
pp. 1706-1715 ◽  
Author(s):  
J. Matthew Watson ◽  
Dorothy E. Shippen

ABSTRACT Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis.


2008 ◽  
Vol 28 (7) ◽  
pp. 2380-2390 ◽  
Author(s):  
Hong Ji ◽  
Christopher J. Adkins ◽  
Bethany R. Cartwright ◽  
Katherine L. Friedman

ABSTRACT In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.


DNA Repair ◽  
2003 ◽  
Vol 2 (9) ◽  
pp. 1041-1064 ◽  
Author(s):  
Julia C. Mallory ◽  
Vladimir I. Bashkirov ◽  
Kelly M. Trujillo ◽  
Jachen A. Solinger ◽  
Margaret Dominska ◽  
...  

Aging Cell ◽  
2018 ◽  
Vol 17 (4) ◽  
pp. e12783 ◽  
Author(s):  
Peili Gu ◽  
Shuting Jia ◽  
Taylor Takasugi ◽  
Eric Smith ◽  
Jayakrishnan Nandakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document