yeast telomerase
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 12)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Greta Hirsch ◽  
Daniel Becker ◽  
Jan-Philipp Lamping ◽  
Heike Krebber

AbstractTelomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est and the Pop proteins. This partly matured telomerase is re-imported into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 leads to the amplification of Y′ elements in the terminal chromosome regions and thus elongated telomere ends. Cse1 does not only support TLC1 import, but also the Sm-ring stabilization on the RNA enableling Mtr10 contact and nuclear import. Thus, Sm-ring formation and import factor contact resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the 1158 nucleotides long mature form via the nuclear exosome. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.


2021 ◽  
Author(s):  
Louise Bartle ◽  
Yulia Vasianovich ◽  
Raymund J. Wellinger

AbstractAs the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.


2021 ◽  
Author(s):  
Anna Greta Hirsch ◽  
Daniel Becker ◽  
Jan-Phillipp Lamping ◽  
Heike Krebber

Telomerases elongate the ends of chromosomes required for cell immortality through their reverse transcriptase activity. By using the model organism Saccharomyces cerevisiae we defined the order in which the holoenzyme matures. First, a longer precursor of the telomerase RNA, TLC1 is transcribed and exported into the cytoplasm, where it associates with the protecting Sm-ring, the Est- and the Pop-proteins. This partly matured telomerase is re-import into the nucleus via Mtr10 and a novel TLC1-import factor, the karyopherin Cse1. Remarkably, while mutations in all known transport factors result in short telomere ends, mutation in CSE1 bypasses this defect and become Type I like survivors. Interestingly, both import receptors contact the Sm-ring for nuclear import, which therefore resembles a quality control step in the maturation process of the telomerase. The re-imported immature TLC1 is finally trimmed into the ~1150 nucleotide long mature form. TMG-capping of TLC1 finalizes maturation, leading to mature telomerase.


2021 ◽  
Author(s):  
Jennifer Porat ◽  
Moaine El Baidouri ◽  
Jorg Grigull ◽  
Jean-Marc Deragon ◽  
Mark A. Bayfield

AbstractThe telomerase holoenzyme is critical for maintaining eukaryotic genome integrity. In addition to a reverse transcriptase and an RNA template, telomerase contains additional proteins that protect the telomerase RNA and promote holoenzyme assembly. Here we report that the methyl phosphate capping enzyme (MePCE) Bin3 is a stable component of the S. pombe telomerase holoenzyme. Bin3 associates with the telomerase and the U6 snRNA through an interaction with the recently described LARP7 family member Pof8, and we demonstrate that these two factors are evolutionarily linked in fungi. Our data suggest that the association of Bin3 with telomerase is independent of its methyltransferase activity, but rather that Bin3 negatively regulates TER1 levels and telomere length. Taken together, this work yields new insight into the composition, assembly, and regulation of the telomerase holoenzyme in fission yeast as well as the breadth of its evolutionary conservation.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2750 ◽  
Author(s):  
David C. Zappulla

It is said that “hindsight is 20-20,” so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the “flexible scaffold” hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Daniela Garcia ◽  
Robert W. Leach ◽  
Gable M. Wadsworth ◽  
Krishna Choudhary ◽  
Hua Li ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 9 ◽  
Author(s):  
Evan P. Hass ◽  
David C. Zappulla

Telomerase RNA contains a template for synthesizing telomeric DNA and has been proposed to act as a flexible scaffold for holoenzyme protein subunits in the RNP. In Saccharomyces cerevisiae, the telomerase RNA, TLC1, is bound by the Sm7 protein complex, which is required for stabilization of the predominant, non-polyadenylated (poly(A)–) TLC1 isoform. However, it remains unclear (1) whether Sm7 retains this function when its binding site is repositioned within TLC1, as has been shown for other TLC1-binding telomerase subunits, and (2) how Sm7 stabilizes poly(A)– TLC1. Here, we first show that Sm7 can stabilize poly(A)– TLC1 even when its binding site is repositioned via circular permutation to several different positions within TLC1, further supporting the conclusion that the telomerase holoenzyme is organizationally flexible. Next, we show that when an Sm site is inserted 5′ of its native position and the native site is mutated, Sm7 stabilizes shorter forms of poly(A)– TLC1 in a manner corresponding to how far upstream the new site was inserted, providing strong evidence that Sm7 binding to TLC1 controls where the mature poly(A)– 3′ is formed by directing a 3′-to-5′ processing mechanism. In summary, our results show that Sm7 and the 3′ end of yeast telomerase RNA comprise an organizationally flexible module within the telomerase RNP and provide insights into the mechanistic role of Sm7 in telomerase RNA biogenesis.


Sign in / Sign up

Export Citation Format

Share Document