scholarly journals TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia

2010 ◽  
Vol 24 (19) ◽  
pp. 2180-2193 ◽  
Author(s):  
S. Mukhopadhyay ◽  
X. Wen ◽  
B. Chih ◽  
C. D. Nelson ◽  
W. S. Lane ◽  
...  
2018 ◽  
Vol 217 (8) ◽  
pp. 2831-2849 ◽  
Author(s):  
Sungsu Lee ◽  
Han Yen Tan ◽  
Ivayla I. Geneva ◽  
Aleksandr Kruglov ◽  
Peter D. Calvert

Physical properties of primary cilia membranes in living cells were examined using two independent, high-spatiotemporal-resolution approaches: fast tracking of single quantum dot–labeled G protein–coupled receptors and a novel two-photon super-resolution fluorescence recovery after photobleaching of protein ensemble. Both approaches demonstrated the cilium membrane to be partitioned into corralled domains spanning 274 ± 20 nm, within which the receptors are transiently confined for 0.71 ± 0.09 s. The mean membrane diffusion coefficient within the corrals, Dm1 = 2.9 ± 0.41 µm2/s, showed that the ciliary membranes were among the most fluid encountered. At longer times, the apparent membrane diffusion coefficient, Dm2 = 0.23 ± 0.05 µm2/s, showed that corral boundaries impeded receptor diffusion 13-fold. Mathematical simulations predict the probability of G protein–coupled receptors crossing corral boundaries to be 1 in 472. Remarkably, latrunculin A, cytochalasin D, and jasplakinolide treatments altered the corral permeability. Ciliary membranes are thus partitioned into highly fluid membrane nanodomains that are delimited by filamentous actin.


2021 ◽  
Author(s):  
Chien-Ting Wu ◽  
Keren I. Hilgendorf ◽  
Romina J. Bevacqua ◽  
Yan Hang ◽  
Janos Demeter ◽  
...  

Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and β cells. Loss of cilia disrupts β-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and β cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and β-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and β cells is controlled by ciliary GPCRs providing new targets for diabetes.


Author(s):  
Chien-Ting Wu ◽  
Keren I. Hilgendorf ◽  
Romina J. Bevacqua ◽  
Yan Hang ◽  
Janos Demeter ◽  
...  

SummaryMultiple G protein coupled receptors (GPCRs) are expressed in pancreatic islet cells but the majority have unknown functions. We observe specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α- and β-cells. Loss of cilia disrupts β-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α- and β-cells, including FFAR4, PTGER4, DRD5, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and β-cell lines, and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets depleted ciliary FFAR4 and PTGER4, and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α- and β-cells is regulated by ciliary GPCRs providing new targets for diabetes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128422 ◽  
Author(s):  
Yoshihiro Omori ◽  
Taro Chaya ◽  
Satoyo Yoshida ◽  
Shoichi Irie ◽  
Toshinori Tsujii ◽  
...  

2008 ◽  
Vol 19 (4) ◽  
pp. 1540-1547 ◽  
Author(s):  
Nicolas F. Berbari ◽  
Andrew D. Johnson ◽  
Jacqueline S. Lewis ◽  
Candice C. Askwith ◽  
Kirk Mykytyn

Primary cilia are sensory organelles present on most mammalian cells. The functions of cilia are defined by the signaling proteins localized to the ciliary membrane. Certain G protein–coupled receptors (GPCRs), including somatostatin receptor 3 (Sstr3) and serotonin receptor 6 (Htr6), localize to cilia. As Sstr3 and Htr6 are the only somatostatin and serotonin receptor subtypes that localize to cilia, we hypothesized they contain ciliary localization sequences. To test this hypothesis we expressed chimeric receptors containing fragments of Sstr3 and Htr6 in the nonciliary receptors Sstr5 and Htr7, respectively, in ciliated cells. We found the third intracellular loop of Sstr3 or Htr6 is sufficient for ciliary localization. Comparison of these loops revealed a loose consensus sequence. To determine whether this consensus sequence predicts ciliary localization of other GPCRs, we compared it with the third intracellular loop of all human GPCRs. We identified the consensus sequence in melanin-concentrating hormone receptor 1 (Mchr1) and confirmed Mchr1 localizes to primary cilia in vitro and in vivo. Thus, we have identified a putative GPCR ciliary localization sequence and used this sequence to identify a novel ciliary GPCR. As Mchr1 mediates feeding behavior and metabolism, our results implicate ciliary signaling in the regulation of body weight.


Sign in / Sign up

Export Citation Format

Share Document