scholarly journals Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1

2018 ◽  
Vol 32 (11-12) ◽  
pp. 806-821 ◽  
Author(s):  
Riki Terui ◽  
Koji Nagao ◽  
Yoshitaka Kawasoe ◽  
Kanae Taki ◽  
Torahiko L. Higashi ◽  
...  
2003 ◽  
Vol 3 (1) ◽  
pp. 131-132 ◽  
Author(s):  
A. Kobori ◽  
H. Suda ◽  
K. Nakatani ◽  
I. Saito

2017 ◽  
Author(s):  
Andrew Dittmore ◽  
Sumitabha Brahmachari ◽  
Yasuhara Takagi ◽  
John F. Marko ◽  
Keir C. Neuman

We present a method of detecting sequence defects by supercoiling DNA with magnetic tweezers. The method is sensitive to a single mismatched base pair in a DNA sequence of several thousand base pairs. We systematically compare DNA molecules with 0 to 16 adjacent mismatches at 1 M monovalent salt and 3.5 pN force and show that, under these conditions, a single plectoneme forms and is stably pinned at the defect. We use these measurements to estimate the energy and degree of end-loop kinking at defects. From this, we calculate the relative probability of plectoneme pinning at the mismatch under physiologically relevant conditions. Based on this estimate, we propose that DNA supercoiling could contribute to mismatch and damage sensing in vivo.


2010 ◽  
Vol 16 (44) ◽  
pp. 13218-13225 ◽  
Author(s):  
Hidetaka Torigoe ◽  
Akira Ono ◽  
Tetsuo Kozasa

Biochemistry ◽  
1999 ◽  
Vol 38 (27) ◽  
pp. 8635-8646 ◽  
Author(s):  
Sherry L. Painter ◽  
Irene S. Zegar ◽  
Pamela J. Tamura ◽  
Susanna Bluhm ◽  
Constance M. Harris ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 769 ◽  
Author(s):  
Kenji Takagi ◽  
Tenko Hayashi ◽  
Shinjiro Sawada ◽  
Miku Okazaki ◽  
Sakiko Hori ◽  
...  

During the treatment of viral or bacterial infections, it is important to evaluate any resistance to the therapeutic agents used. An amino acid substitution arising from a single base mutation in a particular gene often causes drug resistance in pathogens. Therefore, molecular tools that discriminate a single base mismatch in the target sequence are required for achieving therapeutic success. Here, we synthesized peptide nucleic acids (PNAs) derivatized with tolane via an amide linkage at the N-terminus and succeeded in improving the sequence specificity, even with a mismatched base pair located near the terminal region of the duplex. We assessed the sequence specificities of the tolane-PNAs for single-strand DNA and RNA by UV-melting temperature analysis, thermodynamic analysis, an in silico conformational search, and a gel mobility shift assay. As a result, all of the PNA-tolane derivatives stabilized duplex formation to the matched target sequence without inducing mismatch target binding. Among the different PNA-tolane derivatives, PNA that was modified with a naphthyl-type tolane could efficiently discriminate a mismatched base pair and be utilized for the detection of resistance to neuraminidase inhibitors of the influenza A/H1N1 virus. Therefore, our molecular tool can be used to discriminate single nucleotide polymorphisms that are related to drug resistance in pathogens.


1997 ◽  
Vol 271 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Hans A. Heus ◽  
Sybren S. Wijmenga ◽  
Hans Hoppe ◽  
Cornelis W. Hilbers

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
William H. Gmeiner ◽  
Freddie Salsbury ◽  
Chris M. Olsen ◽  
Luis A. Marky

Topoisomerase 1 (Top1) enzymes regulate DNA superhelicity by forming covalent cleavage complexes that undergo controlled rotation. Substitution of nucleoside analogs at the +1 position of the DNA duplex relative to the Top1 cleavage site inhibits DNA religation. The reduced efficiency for Top1-mediated religation contributes to the anticancer activity of widely used anticancer drugs including fluoropyrimidines and gemcitabine. In the present study, we report that mismatched base pairs at the +1 position destabilize the duplex DNA components for a model Top1 cleavage complex formation even though one duplex component does not directly include a mismatched base pair. Molecular dynamics simulations reveal G-dU and G-FdU mismatched base pairs, but not a G-T mismatched base pair, increase flexibility at the Top1 cleavage site, and affect coupling between the regions required for the religation reaction to occur. These results demonstrate that substitution of dT analogs into the +1 position of the non-scissile strand alters the stability and flexibility of DNA contributing to the reduced efficiency for Top1-mediated DNA religation. These effects are inherent in the DNA duplex and do not require formation of the Top1:DNA complex. These results provide a biophysical rationale for the inhibition of Top1-mediated DNA religation by nucleotide analog substitution.


Sign in / Sign up

Export Citation Format

Share Document