scholarly journals Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver

2009 ◽  
Vol 19 (6) ◽  
pp. 1044-1056 ◽  
Author(s):  
A. L. Brunner ◽  
D. S. Johnson ◽  
S. W. Kim ◽  
A. Valouev ◽  
T. E. Reddy ◽  
...  
2012 ◽  
Vol 31 (6) ◽  
pp. 893-907 ◽  
Author(s):  
Albert G. Tsai ◽  
Debbie M. Chen ◽  
Mayin Lin ◽  
John C. F. Hsieh ◽  
Cindy Y. Okitsu ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14457 ◽  
Author(s):  
Jiafei Xi ◽  
Yunfang Wang ◽  
Peng Zhang ◽  
Lijuan He ◽  
Xue Nan ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


2014 ◽  
Vol 139 (1) ◽  
pp. 142-161 ◽  
Author(s):  
Marie-Claude Senut ◽  
Arko Sen ◽  
Pablo Cingolani ◽  
Asra Shaik ◽  
Susan J. Land ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1515-1523 ◽  
Author(s):  
Kai-Hsin Chang ◽  
Angelique M. Nelson ◽  
Hua Cao ◽  
Linlin Wang ◽  
Betty Nakamoto ◽  
...  

Human embryonic stem cells are a promising tool to study events associated with the earliest ontogenetic stages of hematopoiesis. We describe the generation of erythroid cells from hES (H1) by subsequent processing of cells present at early and late stages of embryoid body (EB) differentiation. Kinetics of hematopoietic marker emergence suggest that CD45+ hematopoiesis peaks at late D14EB differentiation stages, although low-level CD45- erythroid differentiation can be seen before that stage. By morphologic criteria, hES-derived erythroid cells were of definitive type, but these cells both at mRNA and protein levels coexpressed high levels of embryonic (ϵ) and fetal (γ) globins, with little or no adult globin (β). This globin expression pattern was not altered by the presence or absence of fetal bovine serum, vascular endothelial growth factor, Flt3-L, or coculture with OP-9 during erythroid differentiation and was not culture time dependent. The coexpression of both embryonic and fetal globins by definitive-type erythroid cells does not faithfully mimic either yolk sac embryonic or their fetal liver counterparts. Nevertheless, the high frequency of erythroid cells coexpressing embryonic and fetal globin generated from embryonic stem cells can serve as an invaluable tool to further explore molecular mechanisms.


2009 ◽  
Vol 11 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Yu-Xiao Liu ◽  
Lei Ji ◽  
Wen Yue ◽  
Zhi-Feng Yan ◽  
Jing Wang ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4214-4214
Author(s):  
Feng Ma ◽  
Dan Wang ◽  
Sachiyo Hanada ◽  
Hirohide Kawasaki ◽  
Yuji Zaike ◽  
...  

Abstract Human embryonic stem cells provide a unique tool to study early events occurring in the development of human embryonic hematopoiesis, and their totipotent capability indicates a potent clinical application based on the cellular therapy and the evaluation of drug effects on hematopoietic and blood cells. To achieve efficient production of hematopoietic cells from human embryonic stem cells, we attempted to reproduce the circumstance surrounding embryonic hematopoietic cells in vitro. Since fetal liver is the predominant source of hematopoietic and blood cells in mammalian embryogenesis, we established stromal cells from mouse fetal liver at days 14 to 15 of gestation. In the co-culture of human embryonic stem cells with the established stromal cells, a number of hematopoietic progenitors were generated at around day 14 of co-culture, and this hematopoietic activity was highly enriched in the cobble stone-like cells under the stromal layer. Most of the cobble stone-like cells collected expressed CD34 and contained a variety of hematopoietic colony-forming cells, especially multilineage colony-forming cells, at a high frequency. The multipotential hematopoietic progenitors in the cobble stone-like cells produced all types of mature blood cells, including adult type hemoglobin-synthesizing erythrocytes and tryptase and chymase-bouble positive mast cells in the suspension cultiue with a cytokine cocktail. The developed co-culture system of human embryonic stem cells should offer a novel source for hematopoietic and blood cells applicable to cellular therapies and drug screening.


Sign in / Sign up

Export Citation Format

Share Document