Universal nomogram for the atomtronic quantum rotation sensor

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Ehsan Arabahmadi ◽  
Daniel Schumayer ◽  
David A. W. Hutchinson
Keyword(s):  
Author(s):  
Lei Ren ◽  
Ping Shao ◽  
Dongfeng Zhao ◽  
Yang Zhou ◽  
Zhijian Cai ◽  
...  

The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and $20~\unicode[STIX]{x03BC}\text{m}$ rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.


1991 ◽  
Vol 90 (1) ◽  
pp. 624-624 ◽  
Author(s):  
Edward J. Loper ◽  
David D. Lynch
Keyword(s):  

2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Ehsan Arabahmadi ◽  
Daniel Schumayer ◽  
Mark Edwards ◽  
Ben Eller ◽  
David A. W. Hutchinson

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4947
Author(s):  
Zhihua Wang ◽  
Fengduo Zhang ◽  
Tao Yao ◽  
Na Li ◽  
Xia Li ◽  
...  

Rotation detection is widely applied in industries. The current commonly used rotation detection system adopts a split structure, which requires stringent installation requirements and is difficult to miniaturize. This paper proposes a single-piece self-powered non-contact sensor with an interdigital sensitive layer to detect the rotation of objects. The electric field generated between a polyurethane (PU) film and a polytetrafluoroethylene (PTFE) film is utilized for perceiving the rotation. The surface of the PU film is subjected to wet etching with sulfuric acid to increase the surface area and charge density. Through finite element analysis and experimental testing, the effects of the areas of the sensitive films as well as the horizontal and vertical distances between them on the output voltage are analyzed. Tests are performed on adjustable-speed motors, human arms, and robotic arms. The results show that the sensor can detect the speed, the transient process of rotation, and the swing angle. The proposed rotation sensor has broad application prospects in the fields of mechanical automation, robotics, and Internet of Things (IoT).


Sign in / Sign up

Export Citation Format

Share Document