Theory of dipole moment reconstruction by attosecond transient absorption spectroscopy

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Xiaoxia Wu ◽  
Linxuan Zhang ◽  
Shaofeng Zhang ◽  
Difa Ye
2020 ◽  
Vol 234 (11-12) ◽  
pp. 1735-1758
Author(s):  
Mirko Scholz ◽  
Caroline Hoffmann ◽  
Johannes R. Klein ◽  
Marcel Wirtz ◽  
Gregor Jung ◽  
...  

AbstractWe present a femtosecond pump-probe UV-Vis broadband transient absorption spectroscopy study of two styryl-substituted BODIPY chromophores with different position of the substituent. The α-substituted isomer shows typical BODIPY-type spectral features, such as sharp absorption and emission bands, a small Stokes shift and an excited-state lifetime in the 4 ns range, which only weakly depends on the solvent. In contrast, β-styryl-BODIPY features much broader steady-state absorption and emission spectra and a larger Stokes shift, particularly in polar solvents. Transient absorption spectroscopy including a complete global kinetic analysis reports a substantial decrease in S1 lifetime to 300 ps for polar solvents upon change from α- to β-substitution. In the case of the α-isomer, TD-DFT calculations identify a typical “cyanine-type” electron rearrangement upon S0 → S1 excitation accompanied by a slight reduction in dipole moment. In contrast, the same transition in the β-isomer shows strong intramolecular charge transfer (ICT) character involving a substantial increase in dipole moment. Assuming a simple energy-gap-law argument, the accelerated nonradiative decay of the β-isomer in polar solvents may be linked to the decrease of the S1(ICT)-S0 energy difference. BODIPY dyes with a conjugated substituent in β-position therefore suffer a substantial loss in fluorescence brightness in polar environments compared with their α-substituted counterparts. This might limit their applicability in fluorescence imaging.


2021 ◽  
Author(s):  
Ying Liu ◽  
Jianmin Lu ◽  
Qianxiao Zhang ◽  
Yajie Bai ◽  
Xuliang Pang ◽  
...  

Decoration of Ag-ultrathin Ni-MOF onside Cu2O was firstly fabricated. The charge-transfer dynamics at heterostructure was in-depth revealed by ultrafast transient absorption spectroscopy. NH3 yield rate (4.63 μg h-1 cm-2) with...


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Giovanni Cistaro ◽  
Luis Plaja ◽  
Fernando Martín ◽  
Antonio Picón

Author(s):  
Junjie Chen ◽  
Sen Guo ◽  
Dabin Lin ◽  
Zhaogang Nie ◽  
Chung-Che Huang ◽  
...  

Femtosecond transient absorption spectroscopy has been employed to unravel separate initial nonequilibrium dynamic process of photo-injected electrons and holes during the formation process of the lowest excitons at the K-valley...


Author(s):  
Romain Geneaux ◽  
Hugo J. B. Marroux ◽  
Alexander Guggenmos ◽  
Daniel M. Neumark ◽  
Stephen R. Leone

Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


Sign in / Sign up

Export Citation Format

Share Document